IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i7d10.1038_s41558-020-0786-0.html
   My bibliography  Save this article

Ongoing AMOC and related sea-level and temperature changes after achieving the Paris targets

Author

Listed:
  • Michael Sigmond

    (Canadian Centre for Climate Modelling and Analysis)

  • John C. Fyfe

    (Canadian Centre for Climate Modelling and Analysis)

  • Oleg A. Saenko

    (Canadian Centre for Climate Modelling and Analysis)

  • Neil C. Swart

    (Canadian Centre for Climate Modelling and Analysis)

Abstract

While the Atlantic Meridional Overturning Circulation (AMOC) is expected to weaken under increasing GHGs, it is unclear how it would respond to stabilization of global warming of 1.5 or 2.0 °C, the Paris Agreement temperature targets, or 3.0 °C, the expected warming by 2100 under current emission reduction policies. On the basis of stabilized warming simulations with two Earth System Models, we find that, after temperature stabilization, the AMOC declines for 5–10 years followed by a 150-year recovery to a level that is approximately independent of the considered stabilization scenario. The AMOC recovery has important implications for North Atlantic steric sea-level rise, which by 2600 is simulated to be 25–31% less than the global mean, and for North Atlantic surface temperatures, which continue to increase despite global mean surface temperature stabilization. These results show that substantial ongoing climate trends are likely to occur after global mean temperature has stabilized.

Suggested Citation

  • Michael Sigmond & John C. Fyfe & Oleg A. Saenko & Neil C. Swart, 2020. "Ongoing AMOC and related sea-level and temperature changes after achieving the Paris targets," Nature Climate Change, Nature, vol. 10(7), pages 672-677, July.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:7:d:10.1038_s41558-020-0786-0
    DOI: 10.1038/s41558-020-0786-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0786-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0786-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhamu, Vikas & Mengqi, Xiao & Qureshi, M Fahed & Yin, Zhenyuan & Jana, Amiya K. & Linga, Praveen, 2024. "Evaluating CO2 hydrate kinetics in multi-layered sediments using experimental and machine learning approach: Applicable to CO2 sequestration," Energy, Elsevier, vol. 290(C).
    2. Jörg Schwinger & Ali Asaadi & Nadine Goris & Hanna Lee, 2022. "Possibility for strong northern hemisphere high-latitude cooling under negative emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chris Huntingford & Mark S. Williamson & Femke J. M. M. Nijsse, 2020. "CMIP6 climate models imply high committed warming," Climatic Change, Springer, vol. 162(3), pages 1515-1520, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:7:d:10.1038_s41558-020-0786-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.