IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i6d10.1038_s41558-020-0771-7.html
   My bibliography  Save this article

Present-day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves

Author

Listed:
  • Tim Cowan

    (University of Southern Queensland
    Bureau of Meteorology
    University of Edinburgh)

  • Sabine Undorf

    (University of Edinburgh
    Stockholm University)

  • Gabriele C. Hegerl

    (University of Edinburgh)

  • Luke J. Harrington

    (University of Oxford)

  • Friederike E. L. Otto

    (University of Oxford)

Abstract

Substantial warming occurred across North America, Europe and the Arctic over the early twentieth century1, including an increase in global drought2, that was partially forced by rising greenhouse gases (GHGs)3. The period included the 1930s Dust Bowl drought4–7 across North America’s Great Plains that caused widespread crop failures4,8, large dust storms9 and considerable out-migration10. This coincided with the central United States experiencing its hottest summers of the twentieth century11,12 in 1934 and 1936, with over 40 heatwave days and maximum temperatures surpassing 44 °C at some locations13,14. Here we use a large-ensemble regional modelling framework to show that GHG increases caused slightly enhanced heatwave activity over the eastern United States during 1934 and 1936. Instead of asking how a present-day heatwave would behave in a world without climate warming, we ask how these 1930s heatwaves would behave with present-day GHGs. Heatwave activity in similarly rare events would be much larger under today’s atmospheric GHG forcing and the return period of a 1-in-100-year heatwave summer (as observed in 1936) would be reduced to about 1-in-40 years. A key driver of the increasing heatwave activity and intensity is reduced evaporative cooling and increased sensible heating during dry springs and summers.

Suggested Citation

  • Tim Cowan & Sabine Undorf & Gabriele C. Hegerl & Luke J. Harrington & Friederike E. L. Otto, 2020. "Present-day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves," Nature Climate Change, Nature, vol. 10(6), pages 505-510, June.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:6:d:10.1038_s41558-020-0771-7
    DOI: 10.1038/s41558-020-0771-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0771-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0771-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Howlader, Aparna, 2023. "Determinants and consequences of large-scale tree plantation projects: Evidence from the Great Plains Shelterbelt Project," Land Use Policy, Elsevier, vol. 132(C).
    2. Huang, Wenbo & Cen, Jiwen & Chen, Juanwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: A field test," Energy, Elsevier, vol. 247(C).
    3. E. M. Fischer & U. Beyerle & L. Bloin-Wibe & C. Gessner & V. Humphrey & F. Lehner & A. G. Pendergrass & S. Sippel & J. Zeder & R. Knutti, 2023. "Storylines for unprecedented heatwaves based on ensemble boosting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:6:d:10.1038_s41558-020-0771-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.