IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i6d10.1038_s41558-020-0759-3.html
   My bibliography  Save this article

The proportion of soil-borne pathogens increases with warming at the global scale

Author

Listed:
  • Manuel Delgado-Baquerizo

    (Universidad Pablo de Olavide)

  • Carlos A. Guerra

    (German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig
    Martin-Luther University Halle–Wittenberg)

  • Concha Cano-Díaz

    (Universidad Rey Juan Carlos)

  • Eleonora Egidi

    (Western Sydney University
    Western Sydney University)

  • Jun-Tao Wang

    (Western Sydney University
    Western Sydney University
    Chinese Academy of Sciences)

  • Nico Eisenhauer

    (German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig
    Leipzig University)

  • Brajesh K. Singh

    (Western Sydney University
    Western Sydney University)

  • Fernando T. Maestre

    (Universidad de Alicante
    Universidad de Alicante)

Abstract

Understanding the present and future distribution of soil-borne plant pathogens is critical to supporting food and fibre production in a warmer world. Using data from a global field survey and a nine-year field experiment, we show that warmer temperatures increase the relative abundance of soil-borne potential fungal plant pathogens. Moreover, we provide a global atlas of these organisms along with future distribution projections under different climate change and land-use scenarios. These projections show an overall increase in the relative abundance of potential plant pathogens worldwide. This work advances our understanding of the global distribution of potential fungal plant pathogens and their sensitivity to ongoing climate and land-use changes, which is fundamental to reduce their incidence and impacts on terrestrial ecosystems globally.

Suggested Citation

  • Manuel Delgado-Baquerizo & Carlos A. Guerra & Concha Cano-Díaz & Eleonora Egidi & Jun-Tao Wang & Nico Eisenhauer & Brajesh K. Singh & Fernando T. Maestre, 2020. "The proportion of soil-borne pathogens increases with warming at the global scale," Nature Climate Change, Nature, vol. 10(6), pages 550-554, June.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:6:d:10.1038_s41558-020-0759-3
    DOI: 10.1038/s41558-020-0759-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0759-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0759-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Wei & Quanchao Zeng & Wenfeng Tan, 2021. "Cover Cropping Impacts Soil Microbial Communities and Functions in Mango Orchards," Agriculture, MDPI, vol. 11(4), pages 1-12, April.
    2. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xiaogang Li & Dele Chen & Víctor J. Carrión & Daniel Revillini & Shan Yin & Yuanhua Dong & Taolin Zhang & Xingxiang Wang & Manuel Delgado-Baquerizo, 2023. "Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Marina Robas & Agustín Probanza & Daniel González & Pedro A. Jiménez, 2021. "Mercury and Antibiotic Resistance Co-Selection in Bacillus sp. Isolates from the Almadén Mining District," IJERPH, MDPI, vol. 18(16), pages 1-11, August.
    6. Jialing Teng & Ruixing Hou & Jennifer A. J. Dungait & Guiyao Zhou & Yakov Kuzyakov & Jingbo Zhang & Jing Tian & Zhenling Cui & Fusuo Zhang & Manuel Delgado-Baquerizo, 2024. "Conservation agriculture improves soil health and sustains crop yields after long-term warming," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Pengfa Li & Leho Tedersoo & Thomas W. Crowther & Baozhan Wang & Yu Shi & Lu Kuang & Ting Li & Meng Wu & Ming Liu & Lu Luan & Jia Liu & Dongzhen Li & Yongxia Li & Songhan Wang & Muhammad Saleem & Alex , 2023. "Global diversity and biogeography of potential phytopathogenic fungi in a changing world," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Guillaume Patoine & Nico Eisenhauer & Simone Cesarz & Helen R. P. Phillips & Xiaofeng Xu & Lihua Zhang & Carlos A. Guerra, 2022. "Drivers and trends of global soil microbial carbon over two decades," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Jien Zhou & Xueyan Zhang & Zheng Qu & Chenchen Zhang & Feng Wang & Tongguo Gao & Yanpo Yao & Junfeng Liang, 2024. "Progress in Research on Prevention and Control of Crop Fungal Diseases in the Context of Climate Change," Agriculture, MDPI, vol. 14(7), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:6:d:10.1038_s41558-020-0759-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.