IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i10d10.1038_s41558-020-0873-2.html
   My bibliography  Save this article

Climate-driven changes in the composition of New World plant communities

Author

Listed:
  • K. J. Feeley

    (University of Miami
    Fairchild Tropical Botanic Garden)

  • C. Bravo-Avila

    (University of Miami
    Fairchild Tropical Botanic Garden)

  • B. Fadrique

    (University of Miami)

  • T. M. Perez

    (University of Miami
    Fairchild Tropical Botanic Garden)

  • D. Zuleta

    (Universidad Nacional de Colombia Sede Medellín
    Smithsonian Tropical Research Institute)

Abstract

Climate change is altering the distributions of species, which in turn causes shifts in the composition of plant communities. Specifically, rising temperatures should cause increasing relative abundances of heat-loving or heat-tolerant species (that is, ‘thermophilization’) and changes in precipitation should cause altered abundances of water-demanding species. We analysed millions of records of thousands of species and found that the plant communities in most ecoregions in North, Central and South America have experienced thermophilization over the past four decades (1970–2011). Thermophilization was fastest in ecoregions with intermediate temperatures and was positively correlated with warming rates within many biomes. Changes in the relative abundances of water-demanding species were less consistent and were not correlated with changes in precipitation, meaning that the drought sensitivity of some ecoregions may be increasing despite decreasing rainfall and increasing probabilities of drought. Climate-driven changes in plant community composition will affect the function and stability of New World ecoregions.

Suggested Citation

  • K. J. Feeley & C. Bravo-Avila & B. Fadrique & T. M. Perez & D. Zuleta, 2020. "Climate-driven changes in the composition of New World plant communities," Nature Climate Change, Nature, vol. 10(10), pages 965-970, October.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:10:d:10.1038_s41558-020-0873-2
    DOI: 10.1038/s41558-020-0873-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0873-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0873-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yibo Xu & Xiaohuang Liu & Lianrong Zhao & Jiufen Liu & Xiaofeng Zhao & Hongyu Li & Chao Wang & Honghui Zhao & Ran Wang & Xinping Luo & Liyuan Xing, 2024. "Prediction of Potential Suitability Areas for Ephedra sinica in the Five Northwestern Provinces of China Under Climate Change," Agriculture, MDPI, vol. 14(10), pages 1-18, October.
    3. Yingxiao Zhang & Allison L. Steiner, 2022. "Projected climate-driven changes in pollen emission season length and magnitude over the continental United States," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Imran Khaliq & Christian Rixen & Florian Zellweger & Catherine H. Graham & Martin M. Gossner & Ian R. McFadden & Laura Antão & Jakob Brodersen & Shyamolina Ghosh & Francesco Pomati & Ole Seehausen & T, 2024. "Warming underpins community turnover in temperate freshwater and terrestrial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:10:d:10.1038_s41558-020-0873-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.