IDEAS home Printed from https://ideas.repec.org/a/mtn/ancoec/070305.html
   My bibliography  Save this article

Assessing the goodness of fit of a latent variable model for ordinal data

Author

Listed:
  • Silvia cagnone
  • Stefania Mignani

Abstract

No abstract is available for this item.

Suggested Citation

  • Silvia cagnone & Stefania Mignani, 2007. "Assessing the goodness of fit of a latent variable model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 337-361.
  • Handle: RePEc:mtn:ancoec:070305
    as

    Download full text from publisher

    File URL: https://www.dss.uniroma1.it/RePec/mtn/articoli/2007-3-5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maydeu-Olivares, Albert & Joe, Harry, 2005. "Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1009-1020, September.
    2. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    3. K. Jöreskog, 1969. "A general approach to confirmatory maximum likelihood factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 183-202, June.
    4. David J. Bartholomew & Panagiota Tzamourani, 1999. "The Goodness of Fit of Latent Trait Models in Attitude Measurement," Sociological Methods & Research, , vol. 27(4), pages 525-546, May.
    5. Agresti, Alan & Yang, Ming-Chung, 1987. "An empirical investigation of some effects of sparseness in contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 5(1), pages 9-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Reiser & Silvia Cagnone & Junfei Zhu, 2023. "An Extended GFfit Statistic Defined on Orthogonal Components of Pearson’s Chi-Square," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 208-240, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    2. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    3. Mark Reiser & Silvia Cagnone & Junfei Zhu, 2023. "An Extended GFfit Statistic Defined on Orthogonal Components of Pearson’s Chi-Square," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 208-240, March.
    4. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    5. Chen, Yunxiao & Moustaki, Irini & Zhang, H, 2020. "A note on likelihood ratio tests for models with latent variables," LSE Research Online Documents on Economics 107490, London School of Economics and Political Science, LSE Library.
    6. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    7. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    8. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    9. Kim, Sung-Ho & Choi, Hyemi & Lee, Sangjin, 2009. "Estimate-based goodness-of-fit test for large sparse multinomial distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1122-1131, February.
    10. Salim Moussa, 2016. "A two-step item response theory procedure for a better measurement of marketing constructs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(1), pages 28-50, March.
    11. Yuqi Gu & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2018. "Hypothesis Testing of the Q-matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 515-537, September.
    12. Tang, Min & Slud, Eric V. & Pfeiffer, Ruth M., 2014. "Goodness of fit tests for linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 176-193.
    13. Harry Joe & Alberto Maydeu-Olivares, 2010. "A General Family of Limited Information Goodness-of-Fit Statistics for Multinomial Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 393-419, September.
    14. Genest Christian & Puccetti Giovanni, 2018. "A Journey Beyond The Gaussian World: An interview with Harry Joe," Dependence Modeling, De Gruyter, vol. 6(1), pages 288-297, December.
    15. Banerjee, Syagnik & Poddar, Amit, 2021. "Run-of-the-Mill or Avant Garde? Identifying restaurant category positioning and tastemakers from digital geo-location history," Journal of Business Research, Elsevier, vol. 130(C), pages 436-443.
    16. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    17. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
    18. Yang Liu & Ji Seung Yang & Alberto Maydeu-Olivares, 2019. "Restricted Recalibration of Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 529-553, June.
    19. Shing-On Leung, 2008. "A Three-Dimensional Latent Variable Model for Attitude Scales," Sociological Methods & Research, , vol. 37(1), pages 135-154, August.
    20. Yunxiao Chen & Irini Moustaki & Haoran Zhang, 2020. "A Note on Likelihood Ratio Tests for Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 996-1012, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtn:ancoec:070305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Alfo' (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.