IDEAS home Printed from https://ideas.repec.org/a/mgs/ijoied/v6y2020i4p54-61.html
   My bibliography  Save this article

Predicting Students’ Academic Performance Based on Enrolment Data

Author

Listed:
  • Alisa Bilal Zorić

    (Polytechnic Baltazar Zaprešić, Zaprešić, Croatia)

Abstract

Efficient education is key to the development and progress of modern society. Identifying factors that affect students’ academic performance is a very important step towards efficient education. With fast IT development and lower prices, universities start to collect a huge amount of data. With data mining methods and techniques, universities can use this data, analyze it and get hidden and useful information. This paper presents a model for predicting students’ academic performance based on enrolment data using one of the data mining techniques, Neural network. The enrolment data consists of demographic and economic data and information about previous education. Students’ academic performance is measured by grade point average in university, and based on that, students are divided into two groups. One group consists of students with a grade point average below 3.5, and the other group consists of students with a grade point average above 3.5. This model may represent the first step for educators to early intervene and reduce the percentage of students leaving universities. They could offer students who are classified below average some additional classes to overcome the more difficult courses because of insufficient prior knowledge, thereby, increasing their likelihood of continuing their studies.

Suggested Citation

  • Alisa Bilal Zorić, 2020. "Predicting Students’ Academic Performance Based on Enrolment Data," International Journal of Innovation and Economic Development, Inovatus Services Ltd., vol. 6(4), pages 54-61, October.
  • Handle: RePEc:mgs:ijoied:v:6:y:2020:i:4:p:54-61
    as

    Download full text from publisher

    File URL: https://researchleap.com/wp-content/uploads/2020/11/04.-Predicting_Students_Academic_Performance_Based_on_Enrolment_Data.pdf
    Download Restriction: no

    File URL: https://researchleap.com/predicting-students-academic-performance-based-on-enrolment-data/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oancea, Bogdan & Dragoescu, Raluca & Ciucu, Stefan, 2013. "Predicting students’ results in higher education using a neural network," MPRA Paper 72041, University Library of Munich, Germany.
    2. Edin Osmanbegovic & Mirza Suljic, 2012. "Data Mining Approach For Predicting Student Performance," Economic Review: Journal of Economics and Business, University of Tuzla, Faculty of Economics, vol. 10(1), pages 3-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdan Oancea & Tudorel Andrei & Raluca Mariana Dragoescu, 2016. "An R implementation of a Recurrent Neural Network Trained by Extended Kalman Filter," Romanian Statistical Review, Romanian Statistical Review, vol. 64(2), pages 125-133, June.
    2. Bilal Zorić, Alisa, 2019. "Predicting Students’ Success Using Neural Networks," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 58-66, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    3. Anjeela Jokhan & Aneesh A. Chand & Vineet Singh & Kabir A. Mamun, 2022. "Increased Digital Resource Consumption in Higher Educational Institutions and the Artificial Intelligence Role in Informing Decisions Related to Student Performance," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    4. Deepti Aggarwal & Sonu Mittal & Vikram Bali, 2021. "Significance of Non-Academic Parameters for Predicting Student Performance Using Ensemble Learning Techniques," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 10(3), pages 38-49, July.
    5. January D. Febro & Jocelyn Barbosa, 2017. "Mining student at risk in higher education using predictive models," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 3(4), pages 117-132.

    More about this item

    Keywords

    Neural networks; Educational Data mining; Student’s academic performance;
    All these keywords.

    JEL classification:

    • M00 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mgs:ijoied:v:6:y:2020:i:4:p:54-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bojan Obrenovic (email available below). General contact details of provider: https://researchleap.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.