IDEAS home Printed from https://ideas.repec.org/a/mes/emfitr/v55y2020i8p1841-1856.html
   My bibliography  Save this article

Geopolitical Risks, Returns, and Volatility in Emerging Stock Markets: Evidence from a Panel GARCH Model

Author

Listed:
  • Christos Bouras
  • Christina Christou
  • Rangan Gupta
  • Tahir Suleman

Abstract

In this article, we analyze the role of country-specific and global geopolitical risks (GPRs) on the returns and volatility of 18 emerging market economies over the monthly period of 1998:11 to 2017:06. For our purpose, we use a panel Generalized Autoregressive Conditional Heteroskedasticity (GARCH) approach, which offers substantial efficiency gains in estimating the conditional variance and covariance processes by accounting for interdependencies and heterogeneity across economies, unlikein a time series-based GARCH model. We find that, while country-specific GPRs do not have an impact on stock returns, and the positive effect on equity market volatility is statistically weak. But when we consider a broad measure of global GPR, though there is still no significant effect on returns, the impact on volatility is both economically and statistically stronger than that obtained under the country-specific GPRs, thus highlighting the dominance of global rather than domestic shocks.

Suggested Citation

  • Christos Bouras & Christina Christou & Rangan Gupta & Tahir Suleman, 2020. "Geopolitical Risks, Returns, and Volatility in Emerging Stock Markets: Evidence from a Panel GARCH Model," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(8), pages 1841-1856, July.
  • Handle: RePEc:mes:emfitr:v:55:y:2020:i:8:p:1841-1856
    DOI: 10.1080/1540496X.2018.1507906
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1540496X.2018.1507906
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1540496X.2018.1507906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch & Mark E. Wohar, 2018. "Terror attacks and stock-market fluctuations: evidence based on a nonparametric causality-in-quantiles test for the G7 countries," The European Journal of Finance, Taylor & Francis Journals, vol. 24(4), pages 333-346, March.
    2. Christos Kollias & Stephanos Papadamou & Apostolos Stagiannis, 2010. "Armed Conflicts And Capital Markets: The Case Of The Israeli Military Offensive In The Gaza Strip," Defence and Peace Economics, Taylor & Francis Journals, vol. 21(4), pages 357-365.
    3. Nicholas Apergis & Matteo Bonato & Rangan Gupta & Clement Kyei, 2016. "Does Geopolitical Risks Predict Stock Returns and Volatility of Leading Defense Companies? Evidence from a Nonparametric Approach," Working Papers 201671, University of Pretoria, Department of Economics.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Elie Bouri & Riza Demirer & Rangan Gupta & Hardik A. Marfatia, 2019. "Geopolitical Risks and Movements in Islamic Bond and Equity Markets: A Note," Defence and Peace Economics, Taylor & Francis Journals, vol. 30(3), pages 367-379, April.
    6. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    7. Kollias, Christos & Papadamou, Stephanos & Stagiannis, Apostolos, 2011. "Terrorism and capital markets: The effects of the Madrid and London bomb attacks," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 532-541, October.
    8. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    9. Lee, Jim, 2010. "The link between output growth and volatility: Evidence from a GARCH model with panel data," Economics Letters, Elsevier, vol. 106(2), pages 143-145, February.
    10. Suleman, Tahir & Gupta, Rangan & Balcilar, Mehmet, 2017. "Does country risks predict stock returns and volatility? Evidence from a nonparametric approach," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1173-1195.
    11. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2018. "Geopolitical risks and stock market dynamics of the BRICS," Economic Systems, Elsevier, vol. 42(2), pages 295-306.
    14. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    15. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    16. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    17. Christos Kollias & Stephanos Papadamou & Vangelis Arvanitis, 2013. "Symposium - Does Terrorism Affect the Stock-Bond Covariance? Evidence from European Countries," Southern Economic Journal, John Wiley & Sons, vol. 79(4), pages 832-848, April.
    18. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch & Mark Wohar, 2016. "Do Terror Attacks Affect the Dollar-Pound Exchange Rate? A Nonparametric Causality-in-Quantiles Analysis," Working Papers 201615, University of Pretoria, Department of Economics.
    19. Christos Kollias & Catherine Kyrtsou & Stephanos Papadamou, 2011. "The Effects of Terrorism and War on the Oil and Prices Stock Indices Relationship," Economics of Security Working Paper Series 57, DIW Berlin, German Institute for Economic Research.
    20. Kollias, Christos & Manou, Efthalia & Papadamou, Stephanos & Stagiannis, Apostolos, 2011. "Stock markets and terrorist attacks: Comparative evidence from a large and a small capitalization market," European Journal of Political Economy, Elsevier, vol. 27(S1), pages 64-77.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elie Bouri & Riza Demirer & Rangan Gupta & Hardik A. Marfatia, 2019. "Geopolitical Risks and Movements in Islamic Bond and Equity Markets: A Note," Defence and Peace Economics, Taylor & Francis Journals, vol. 30(3), pages 367-379, April.
    2. Nicholas Apergis & Matteo Bonato & Rangan Gupta & Clement Kyei, 2016. "Does Geopolitical Risks Predict Stock Returns and Volatility of Leading Defense Companies? Evidence from a Nonparametric Approach," Working Papers 201671, University of Pretoria, Department of Economics.
    3. Cepni, Oguzhan & Emirmahmutoglu, Furkan & Guney, Ibrahim Ethem & Yilmaz, Muhammed Hasan, 2023. "Do the carry trades respond to geopolitical risks? Evidence from BRICS countries," Economic Systems, Elsevier, vol. 47(2).
    4. Li, Sufang & Tu, Dalun & Zeng, Yan & Gong, Chenggang & Yuan, Di, 2022. "Does geopolitical risk matter in crude oil and stock markets? Evidence from disaggregated data," Energy Economics, Elsevier, vol. 113(C).
    5. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    6. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    7. Bathia, Deven & Bouras, Christos & Demirer, Riza & Gupta, Rangan, 2020. "Cross-border capital flows and return dynamics in emerging stock markets: Relative roles of equity and debt flows," Journal of International Money and Finance, Elsevier, vol. 109(C).
    8. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2018. "Geopolitical risks and stock market dynamics of the BRICS," Economic Systems, Elsevier, vol. 42(2), pages 295-306.
    9. Kollias Christos & Papadamou Stephanos & Psarianos Iacovos, 2014. "Rogue State Behavior and Markets: the Financial Fallout of North Korean Nuclear Tests," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 20(2), pages 267-292, April.
    10. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    11. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    12. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    13. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    14. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2016. "The Chinese Stock Market Does not React to the Japanese Market: Using Intraday Data to Analyse Return and Volatility Spillover Effects," The Japanese Economic Review, Springer, vol. 67(3), pages 280-294, September.
    15. Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Similarity of emerging market returns under changing market conditions: Markets in the ASEAN-4, Latin America, Middle East, and BRICs," Economic Systems, Elsevier, vol. 39(2), pages 253-268.
    16. Qian, Ya & Tu, Jun & Härdle, Wolfgang Karl, 2019. "Information Arrival, News Sentiment, Volatilities and Jumps of Intraday Returns," IRTG 1792 Discussion Papers 2019-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    18. Hu, John Wei-Shan & Chen, Mei-Yuan & Fok, Robert C. W. & Huang, Bwo-Nung, 1997. "Causality in volatility and volatility spillover effects between US, Japan and four equity markets in the South China Growth Triangular," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(4), pages 351-367, December.
    19. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    20. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mes:emfitr:v:55:y:2020:i:8:p:1841-1856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/MREE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.