IDEAS home Printed from https://ideas.repec.org/a/mcb/jmoncb/v28y1996i3p452-76.html
   My bibliography  Save this article

Empirical Tests of Two State-Variable Heath-Jarrow-Morton Models

Author

Listed:
  • Bliss, Robert R
  • Ritchken, Peter

Abstract

Models for pricing interest rate claims, developed under the Heath-Jarrow-Morton paradigm, differ according to the volatility structure imposed on forward rates. For most general HJM structures the resultant path dependence creates implementation problems. Ritchken and Sankarasubramanian have recently identified necessary and sufficient conditions on the class of volatility structures of forward rates that enable the term structure dynamics to be captured by a finite set of state variables. The class is quite rich. The instantaneous spot rate volatility may be quite general, but the model curtails the structure of forward rate volatilities relative to this spot rate volatility. This article provides empirical tests for this class of volatility structures. Unlike other studies, the volatility structure is examined over a broad section of maturities in the yield curve. Using Treasury data over the period 1982-94, we find support for this class. Furthermore, unlike other studies, no evidence of a 'volatility' hump is identified. Copyright 1996 by Ohio State University Press.

Suggested Citation

  • Bliss, Robert R & Ritchken, Peter, 1996. "Empirical Tests of Two State-Variable Heath-Jarrow-Morton Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(3), pages 452-476, August.
  • Handle: RePEc:mcb:jmoncb:v:28:y:1996:i:3:p:452-76
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0022-2879%28199608%2928%3A3%3C452%3AETOTSH%3E2.0.CO%3B2-D&origin=bc
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Li & Xiaoxia Ye, 2013. "A Type of HJM Based Affine Model: Theory and Empirical Evidence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    2. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    3. Antje Berndt & Peter Ritchken & Zhiqiang Sun, 2010. "On Correlation and Default Clustering in Credit Markets," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2680-2729, July.
    4. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    5. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    6. Antje Berndt & Peter Ritchken & Zhiqiang Sun, "undated". "On Correlation Effects and Default Clustering in Credit Models," GSIA Working Papers 2008-E36, Carnegie Mellon University, Tepper School of Business.
    7. Tzavalis, Elias, 2004. "The term premium and the puzzles of the expectations hypothesis of the term structure," Economic Modelling, Elsevier, vol. 21(1), pages 73-93, January.
    8. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.
    9. Simon H. Babbs, 2002. "Conditional Gaussian models of the term structure of interest rates," Finance and Stochastics, Springer, vol. 6(3), pages 333-353.
    10. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Li, Haitao & Ye, Xiaoxia & Yu, Fan, 2020. "Unifying Gaussian dynamic term structure models from a Heath–Jarrow–Morton perspective," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1153-1167.
    12. Mercurio, F. & Moraleda, J. M., 2000. "An analytically tractable interest rate model with humped volatility," European Journal of Operational Research, Elsevier, vol. 120(1), pages 205-214, January.
    13. Fabio Mercurio & Juan Moraleda, 2001. "A family of humped volatility models," The European Journal of Finance, Taylor & Francis Journals, vol. 7(2), pages 93-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcb:jmoncb:v:28:y:1996:i:3:p:452-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-2879 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.