IDEAS home Printed from https://ideas.repec.org/a/lde/journl/y2020i93p23-64.html
   My bibliography  Save this article

Installed capacity of photovoltaic solar energy in Colombia: An analysis ofeconomic incentives

Author

Listed:
  • Manuela Castaño-Gómez

    (Universidad EAFIT)

  • John Jairo García-Rendón

    (Universidad EAFIT)

Abstract

Due to the abrupt drop in the worldwide energy generation levelized cost of non-conventionalrenewable technologies (in the case of the markets in the United States between 39 to 152 USD/MWhfor photovoltaic solar energy and between 26 to 50 USD/MWh for wind energy), the use of mechanismssuch as Feed in Tariff have been replaced by auctions, as a viable market mechanism to encourageinvestment on these generation sources. Based on Bass’s technology diffusion model, this paper analyzesthe impact of current incentives, considered in Law 1715 of 2014, on investment in photovoltaic solarenergy in Colombia. The main results of the large-scale project scenario show an installed capacity 1542MW of solar PV by 2030, which makes it the most profitable and the one with the highest growthpotential. The contribution in this paper is to survey the Colombian electricity market potential on theinclusion of solar PV

Suggested Citation

  • Manuela Castaño-Gómez & John Jairo García-Rendón, 2020. "Installed capacity of photovoltaic solar energy in Colombia: An analysis ofeconomic incentives," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 93, pages 23-64, Julio-Dic.
  • Handle: RePEc:lde:journl:y:2020:i:93:p:23-64
    DOI: 10.17533/udea.le.n93a338727
    as

    Download full text from publisher

    File URL: https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338727
    Download Restriction: no

    File URL: https://libkey.io/10.17533/udea.le.n93a338727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    2. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    3. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    4. Liu, Xueying & Madlener, Reinhard, 2019. "Get Ready for Take-Off: A Two-Stage Model of Aircraft Market Diffusion," FCN Working Papers 15/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Umberto Mecca & Paolo Piantanida & Francesco Prizzon & Manuela Rebaudengo, 2019. "Impact of Brownfield Sites on Local Energy Production as Resilient Response to Land Contamination: A Case Study in Italy," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    6. Min Hee Chung, 2020. "Comparison of Economic Feasibility for Efficient Peer-to-Peer Electricity Trading of PV-Equipped Residential House in Korea," Energies, MDPI, vol. 13(14), pages 1-21, July.
    7. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    8. Nurwidiana Nurwidiana & Bertha Maya Sopha & Adhika Widyaparaga, 2022. "Simulating Socio-Technical Transitions of Photovoltaics Using Empirically Based Hybrid Simulation-Optimization Approach," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    9. Moncada, J.A. & Tao, Z. & Valkering, P. & Meinke-Hubeny, F. & Delarue, E., 2021. "Influence of distribution tariff structures and peer effects on the adoption of distributed energy resources," Applied Energy, Elsevier, vol. 298(C).
    10. Heymann, Fabian & Miranda, Vladimiro & Soares, Filipe Joel & Duenas, Pablo & Perez Arriaga, Ignacio & Prata, Ricardo, 2019. "Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal," Applied Energy, Elsevier, vol. 256(C).
    11. Simpson, Genevieve & Clifton, Julian, 2016. "Subsidies for residential solar photovoltaic energy systems in Western Australia: Distributional, procedural and outcome justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 262-273.
    12. Zhang, Qi & Wu, Xifeng & Chen, Yu, 2022. "Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy," Energy Policy, Elsevier, vol. 168(C).
    13. Arias-Gaviria, Jessica & Larsen, Erik R. & Arango-Aramburo, Santiago, 2018. "Understanding the future of Seawater Air Conditioning in the Caribbean: A simulation approach," Utilities Policy, Elsevier, vol. 53(C), pages 73-83.
    14. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    15. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Liu, Xueying & Madlener, Reinhard, 2021. "The sky is the limit: Assessing aircraft market diffusion with agent-based modeling," Journal of Air Transport Management, Elsevier, vol. 96(C).
    17. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    18. Hesselink, Laurens X.W. & Chappin, Emile J.L., 2019. "Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 29-41.
    19. Arias-Gaviria, Jessica & Carvajal-Quintero, Sandra Ximena & Arango-Aramburo, Santiago, 2019. "Understanding dynamics and policy for renewable energy diffusion in Colombia," Renewable Energy, Elsevier, vol. 139(C), pages 1111-1119.
    20. Sachs, Julia & Meng, Yiming & Giarola, Sara & Hawkes, Adam, 2019. "An agent-based model for energy investment decisions in the residential sector," Energy, Elsevier, vol. 172(C), pages 752-768.

    More about this item

    Keywords

    energy management? economic regulation? non-conventional renewable energy? technologicalinnovation.;

    JEL classification:

    • K2 - Law and Economics - - Regulation and Business Law
    • L21 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Business Objectives of the Firm
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lde:journl:y:2020:i:93:p:23-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlos Andrés Vasco Correa (email available below). General contact details of provider: https://edirc.repec.org/data/deantco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.