IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i6d10.1007_s11116-019-10040-8.html
   My bibliography  Save this article

Calibrating travel time thresholds with cluster analysis and AFC data for passenger reasonable route generation on an urban rail transit network

Author

Listed:
  • Wei Zhu

    (Tongji University
    Tongji University)

  • Wei-li Fan

    (Tongji University
    Tongji University)

  • Amr M. Wahaballa

    (Aswan University)

  • Jin Wei

    (Tongji University
    Tongji University)

Abstract

Estimating the route choice patterns for transit passengers is important to improve service reliability. The size and composition of a route choice set affects the choice model estimation and passenger flow calculations for urban rail transit (URT) networks. With the existing threshold decision method, there will be omissions or excess routes in the generated route set, which lead to a significant deviation in passenger flow assignments. This paper proposes a data-driven approach to calibrate the travel time thresholds when generating reasonable route choice sets. First, an automatic fare collection (AFC) data-driven framework is established to more accurately calibrate and dynamically update travel time thresholds with changes in the URT system. The framework consists of four steps: data preprocessing, origin–destination-based threshold calculation, cluster analysis-based calibration, and calibrated result output and update. Second, the proposed approach is applied to the Beijing subway as a case study, and several promising results are analyzed that allow the optimization of existing travel time thresholds. The obtained results help in the estimation of route choice behavior to validate current rail transit assignment models. This study is also applicable for other rail transit networks with AFC systems to record passenger passage times at both entry and exit gates.

Suggested Citation

  • Wei Zhu & Wei-li Fan & Amr M. Wahaballa & Jin Wei, 2020. "Calibrating travel time thresholds with cluster analysis and AFC data for passenger reasonable route generation on an urban rail transit network," Transportation, Springer, vol. 47(6), pages 3069-3090, December.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:6:d:10.1007_s11116-019-10040-8
    DOI: 10.1007/s11116-019-10040-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-10040-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-019-10040-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    2. Coldren, Gregory M. & Koppelman, Frank S., 2005. "Modeling the competition among air-travel itinerary shares: GEV model development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 345-365, May.
    3. van der Zijpp, N.J. & Fiorenzo Catalano, S., 2005. "Path enumeration by finding the constrained K-shortest paths," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 545-563, July.
    4. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    5. Piet Bovy & Sascha Hoogendoorn-Lanser, 2005. "Modelling route choice behaviour in multi-modal transport networks," Transportation, Springer, vol. 32(4), pages 341-368, July.
    6. Hironori Kato & Yuichiro Kaneko & Masashi Inoue, 2010. "Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area," Transportation, Springer, vol. 37(5), pages 775-799, September.
    7. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomhave, Benjamin J. & Khani, Alireza, 2022. "Refined choice set generation and the investigation of multi-criteria transit route choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 484-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
    2. Massimo Gangi & Giulio E. Cantarella & Antonino Vitetta, 2019. "Solving stochastic frequency-based assignment to transit networks with pre-trip/en-route path choice," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 661-681, December.
    3. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    4. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    5. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    6. Junghan Baek & Keemin Sohn, 2016. "An investigation into passenger preference for express trains during peak hours," Transportation, Springer, vol. 43(4), pages 623-641, July.
    7. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    8. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    9. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.
    10. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    11. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    12. Chorus, Caspar G. & Timmermans, Harry J.P., 2009. "Measuring user benefits of changes in the transport system when traveler awareness is limited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 536-547, June.
    13. Bell, Michael G.H., 2009. "Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 97-107, January.
    14. Kumar, Anshuman Anjani & Kang, Jee Eun & Kwon, Changhyun & Nikolaev, Alexander, 2016. "Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 270-291.
    15. Habib, Khandker Nurul & Morency, Catherine & Trépanier, Martin & Salem, Sarah, 2013. "Application of an independent availability logit model (IAL) for route choice modelling: Considering bridge choice as a key determinant of selected routes for commuting in Montreal," Journal of choice modelling, Elsevier, vol. 9(C), pages 14-26.
    16. Ghatee, Mehdi & Hashemi, S. Mehdi, 2009. "Traffic assignment model with fuzzy level of travel demand: An efficient algorithm based on quasi-Logit formulas," European Journal of Operational Research, Elsevier, vol. 194(2), pages 432-451, April.
    17. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    18. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
    19. Wei, Chong & Asakura, Yasuo & Iryo, Takamasa, 2014. "Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 45-57.
    20. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:6:d:10.1007_s11116-019-10040-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.