Trend analysis of activity generation attributes over time
Author
Abstract
Suggested Citation
DOI: 10.1007/s11116-015-9624-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
- Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
- Bhat, Chandra R. & Koppelman, Frank S., 1993. "A conceptual framework of individual activity program generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(6), pages 433-446, November.
- Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gozde Ozonder & Eric J. Miller, 2021. "Longitudinal analysis of activity generation in the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1149-1183, June.
- Kim, Seheon & Rasouli, Soora & Timmermans, Harry & Yang, Dujuan, 2018. "Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 168-184.
- Wang, Kaili & Liu, Yicong & Mashrur, Sk Md & Loa, Patrick & Habib, Khandker Nurul, 2021. "COVid-19 influenced households’ Interrupted Travel Schedules (COVHITS) survey: Lessons from the fall 2020 cycle," Transport Policy, Elsevier, vol. 112(C), pages 43-62.
- Pani, Agnivesh & Sahu, Prasanta K. & Tavasszy, Lóránt & Mishra, Sabya, 2023. "Freight activity-travel pattern generation (FAPG) as an enhancement of freight (trip) generation modelling: Methodology and case study," Transport Policy, Elsevier, vol. 144(C), pages 34-48.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dane, Gamze & Arentze, Theo A. & Timmermans, Harry J.P. & Ettema, Dick, 2014. "Simultaneous modeling of individuals’ duration and expenditure decisions in out-of-home leisure activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 93-103.
- Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
- Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
- Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
- Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
- Kim, Seheon & Rasouli, Soora & Timmermans, Harry & Yang, Dujuan, 2018. "Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 168-184.
- Cho, WooKeol & Chung, Jin-Hyuk & Kim, Jinhee, 2023. "Need-based approach for modeling multiday activity participation patterns and identifying the impact of activity/travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
- Chorus, Caspar & van Cranenburgh, Sander & Daniel, Aemiro Melkamu & Sandorf, Erlend Dancke & Sobhani, Anae & Szép, Teodóra, 2021. "Obfuscation maximization-based decision-making: Theory, methodology and first empirical evidence," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 28-44.
- Zhou Hui-fen & Li Zhen-shan & Xue Dong-qian & Lei Yang, 2012. "Time Use Patterns Between Maintenance, Subsistence and Leisure Activities: A Case Study in China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 105(1), pages 121-136, January.
- Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
- Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
- Arentze, Theo & Timmermans, Harry, 2007. "Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 772-783, August.
- Theo A. Arentze & Benedict G. C. Dellaert & Caspar G. Chorus, 2015. "Incorporating Mental Representations in Discrete Choice Models of Travel Behavior: Modeling Approach and Empirical Application," Transportation Science, INFORMS, vol. 49(3), pages 577-590, August.
- Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
- Marki, Fabian & Charypar, David & Axhausen, Kay, 2014. "Location choice for a continuous simulation of long periods under changing conditions," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 1-18.
- André de Palma & Nathalie Picard & Ignacio Inoa, 2014.
"Discrete choice decision-making with multiple decision-makers within the household,"
Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 363-382,
Edward Elgar Publishing.
- André de Palma & Nathalie Picard & Ignacio Inoa, 2013. "Discrete Choice Decision-Making with Multiple Decision Makers within the Household," Working Papers hal-00812835, HAL.
- André de Palma & Nathalie Picard & Ignacio Inoa, 2014. "Discrete Choice Decision-Making with Multiple Decision Makers within the Household," Working Papers hal-00969216, HAL.
- Nathalie Picard & André de Palma & Ignacio A. Inoa, 2013. "Discrete Choice Decision-Making with Multiple Decision Makers within the Household," THEMA Working Papers 2013-03, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
- Tang, Jia & Mokhtarian, Patricia L. & Zhen, Feng, 2020. "How do passengers allocate and evaluate their travel time? Evidence from a survey on the Shanghai–Nanjing high speed rail corridor, China," Journal of Transport Geography, Elsevier, vol. 85(C).
- André de Palma & Nathalie Picard & Robin Lindsey, 2024.
"Activity and transportation decisions within households,"
Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 426-451,
Edward Elgar Publishing.
- André de Palma & Nathalie Picard & Robin Lindsey, 2021. "Activity and Transportation Decisions within Households," THEMA Working Papers 2021-18, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- André de Palma & Nathalie Picard & Robin Lindsey, 2021. "Activity and Transportation Decisions within Households," Working Papers of BETA 2021-37, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Yan, Qianqian & Feng, Tao & Timmermans, Harry, 2023. "A model of household shared parking decisions incorporating equity-seeking household dynamics and leadership personality traits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
More about this item
Keywords
Travel demand modelling; Activity generation; Activity attribute distribution; TASHA; Montreal;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9624-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.