IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i4p905-922.html
   My bibliography  Save this article

Agent-based model for continuous activity planning with an open planning horizon

Author

Listed:
  • Fabian Märki
  • David Charypar
  • Kay Axhausen

Abstract

The paper proposes the microscopic travel demand model continuous target-based activity planning (C-TAP) that generates multi-week schedules by means of a continuous planning approach with an open planning horizon. C-TAP introduces behavioral targets to describe people’s motivation to perform activities, and it uses a planning heuristic to make on-the-fly decisions about upcoming activities. The planning heuristic bases its decisions on three aspects: a discomfort index derived from deviations from agents’ past performance with regard to their behavioral targets; the effectiveness of the immediate execution; and activity execution options available in the near future. The paper reports the results of a test scenario based on an existing 6-week continuous travel diary and validates C-TAP by comparing simulation results with observed behavioral patterns along several dimensions (weekday similarities, weekday execution probabilities of activities, transition probabilities between activities, duration distributions of activities, frequency distributions of activities, execution interval distributions of activities and weekly travel probability distributions). The results show that C-TAP has the capability to reproduce observed behavior and the flexibility to introduces new behavioral patterns. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Fabian Märki & David Charypar & Kay Axhausen, 2014. "Agent-based model for continuous activity planning with an open planning horizon," Transportation, Springer, vol. 41(4), pages 905-922, July.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:4:p:905-922
    DOI: 10.1007/s11116-014-9512-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-014-9512-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-014-9512-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    3. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    4. G Ioannou & M Kritikos & G Prastacos, 2001. "A greedy look-ahead heuristic for the vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 523-537, May.
    5. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    2. Zannat, Khatun E. & Laudan, Janek & Choudhury, Charisma F. & Hess, Stephane, 2024. "Developing an agent-based microsimulation for predicting the Bus Rapid Transit (BRT) demand in developing countries: A case study of Dhaka, Bangladesh," Transport Policy, Elsevier, vol. 148(C), pages 92-106.
    3. Dianat, Leila & Habib, Khandker Nurul & Miller, Eric J., 2020. "Modeling and forecasting daily non-work/school activity patterns in an activity-based model using skeleton schedule constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 337-352.
    4. Biruk Gebremedhin Mesfin & Zihao Li & Daniel (Jian) Sun & Deming Chen & Yueting Xi, 2024. "Urban traffic-parking system dynamics model with macroscopic properties: a comparative study between Shanghai and Zurich," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marki, Fabian & Charypar, David & Axhausen, Kay, 2014. "Location choice for a continuous simulation of long periods under changing conditions," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 1-18.
    2. An, Qian & Gordon, Peter & Moore II, James, 2014. "Location choice for a continuous simulation of long periods under changing conditions," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 85-103.
    3. Zuschke, Nick, 2020. "The impact of task complexity and task motivation on in-store marketing effectiveness: An eye tracking analysis," Journal of Business Research, Elsevier, vol. 116(C), pages 337-350.
    4. Cirillo, C. & Axhausen, K.W., 2006. "Evidence on the distribution of values of travel time savings from a six-week diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 444-457, June.
    5. Sigal Kaplan & Yoram Shiftan & Shlomo Bekhor, 2011. "A Semi-Compensatory Residential Choice Model With Flexible Error Structure," ERSA conference papers ersa10p65, European Regional Science Association.
    6. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    7. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    8. Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
    9. Gandino, E., 2018. "Co-designing the solution space for rural regeneration in a new World Heritage site: A Choice Experiments approachAuthor-Name: Ferretti, V," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1077-1091.
    10. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    11. Pleshcheva, Vlada, 2019. "Metric and Scale Effects in Consumer Preferences for Environmental Benefits," Rationality and Competition Discussion Paper Series 147, CRC TRR 190 Rationality and Competition.
    12. Mikołaj Czajkowski & Marek Giergiczny & William H. Greene, 2012. "Learning and Fatigue Effects Revisited. The Impact of Accounting for Unobservable Preference and Scale Heterogeneity on Perceived Ordering Effects in Multiple Choice Task Discrete Choice Experiments," Working Papers 2012-08, Faculty of Economic Sciences, University of Warsaw.
    13. Petrovich, Beatrice & Carattini, Stefano & Wüstenhagen, Rolf, 2021. "The price of risk in residential solar investments," Ecological Economics, Elsevier, vol. 180(C).
    14. Laurent Reynald-Alexandre, 2006. "Differentiated duopoly with 'elimination by aspects'," Working Papers halshs-00590488, HAL.
    15. Swait, Joffre & Brigden, Neil & Johnson, Richard D., 2014. "Categories shape preferences: A model of taste heterogeneity arising from categorization of alternatives," Journal of choice modelling, Elsevier, vol. 13(C), pages 3-23.
    16. Torgler, Benno & Schneider, Friedrich & Schaltegger, Christoph A., 2007. "With or Against the People? The Impact of a Bottom-Up Approach on Tax Morale and the Shadow Economy," Berkeley Olin Program in Law & Economics, Working Paper Series qt6331x6vz, Berkeley Olin Program in Law & Economics.
    17. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    18. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    19. Daniel Fonseca Costa & Francisval Carvalho & Bruno César Moreira & José Willer Prado, 2017. "Bibliometric analysis on the association between behavioral finance and decision making with cognitive biases such as overconfidence, anchoring effect and confirmation bias," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1775-1799, June.
    20. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:4:p:905-922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.