IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v33y2006i3p291-310.html
   My bibliography  Save this article

Short-term Hourly Traffic Forecasts using Hong Kong Annual Traffic Census

Author

Listed:
  • William Lam
  • Y. Tang
  • K. Chan
  • Mei-Lam Tam

Abstract

The need for acquiring the current-year traffic data is a problem for transport planners since such data may not be available for on-going transport studies. A method is proposed in this paper to predict hourly traffic flows up to and into the near future, using historical data collected from the Hong Kong Annual Traffic Census (ATC). Two parametric and two non-parametric models have been employed and evaluated in this study. The results show that the non-parametric models (Non-Parametric Regression (NPR) and Gaussian Maximum Likelihood (GML)) were more promising for predicting hourly traffic flows at the selected ATC station. Further analysis encompassing 87 ATC stations revealed that the NPR is likely to react to unexpected changes more effectively than the GML method, while the GML model performs better under steady traffic flows. Taking into consideration the dynamic nature of the common traffic patterns in Hong Kong and the advantages/disadvantages of the various models, the NPR model is recommended for predicting the hourly traffic flows in that region. Copyright Springer 2006

Suggested Citation

  • William Lam & Y. Tang & K. Chan & Mei-Lam Tam, 2006. "Short-term Hourly Traffic Forecasts using Hong Kong Annual Traffic Census," Transportation, Springer, vol. 33(3), pages 291-310, May.
  • Handle: RePEc:kap:transp:v:33:y:2006:i:3:p:291-310
    DOI: 10.1007/s11116-005-0327-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-005-0327-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-005-0327-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, James W. & Snyder, Ralph D., 2012. "Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing," Omega, Elsevier, vol. 40(6), pages 748-757.
    2. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    3. Noelia Caceres & Luis M. Romero & Francisco J. Morales & Antonio Reyes & Francisco G. Benitez, 2018. "Estimating traffic volumes on intercity road locations using roadway attributes, socioeconomic features and other work-related activity characteristics," Transportation, Springer, vol. 45(5), pages 1449-1473, September.
    4. Ruiz-Aguilar, J.J. & Turias, I.J. & Jiménez-Come, M.J., 2014. "Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 1-13.
    5. Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
    6. Quang Hoc Tran & Yao-Min Fang & Tien-Yin Chou & Thanh-Van Hoang & Chun-Tse Wang & Van Truong Vu & Thi Lan Huong Ho & Quang Le & Mei-Hsin Chen, 2022. "Short-Term Traffic Speed Forecasting Model for a Parallel Multi-Lane Arterial Road Using GPS-Monitored Data Based on Deep Learning Approach," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    7. M. Milenković & N. Milosavljevic & N. Bojović & S. Val, 2021. "Container flow forecasting through neural networks based on metaheuristics," Operational Research, Springer, vol. 21(2), pages 965-997, June.
    8. Gu Pang & Bartosz Gebka, 2017. "Forecasting container throughput using aggregate or terminal-specific data? The case of Tanjung Priok Port, Indonesia," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2454-2469, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:33:y:2006:i:3:p:291-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.