A note on limit results for the Penrose–Banzhaf index
Author
Abstract
Suggested Citation
DOI: 10.1007/s11238-019-09726-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kurz, Sascha & Napel, Stefan & Nohn, Andreas, 2014. "The nucleolus of large majority games," Economics Letters, Elsevier, vol. 123(2), pages 139-143.
- Lindner, Ines & Owen, Guillermo, 2007. "Cases where the Penrose limit theorem does not hold," Mathematical Social Sciences, Elsevier, vol. 53(3), pages 232-238, May.
- Lindner, Ines & Machover, Moshe, 2004. "L.S. Penrose's limit theorem: proof of some special cases," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 37-49, January.
- SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Chang, Pao-Li & Chua, Vincent C.H. & Machover, Moshe, 2006.
"L S Penrose's limit theorem: Tests by simulation,"
Mathematical Social Sciences, Elsevier, vol. 51(1), pages 90-106, January.
- Pao-Li Chang & Vincent CH Chua & Moshe Machover, 2004. "LS Penrose’s limit theorem: Tests by simulation," Working Papers 26-2004, Singapore Management University, School of Economics.
- Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
- Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sascha Kurz, 2016. "The inverse problem for power distributions in committees," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(1), pages 65-88, June.
- Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017.
"Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral,"
L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
- Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2016. "Le Mécanisme Optimal de Vote au Sein du Conseil des Représentants d'un Système Fédéral," TSE Working Papers 16-617, Toulouse School of Economics (TSE), revised Dec 2016.
- Michel Le Breton & Dominique Lepelley & Vincent Merlin, 2016. "Le Mécanisme Optimal de Vote au Sein du Conseil des Représentants d'un Système Fédéral," Working Papers hal-01452556, HAL.
- Michel Le Breton & Dominique Lepelley & Antonin Macé & Vincent Merlin, 2017. "Le Mécanisme Optimal de Vote au Sein du Conseil des Représentants d'un Système Fédéral," Post-Print hal-01680778, HAL.
- Artyom Jelnov & Yair Tauman, 2014.
"Voting power and proportional representation of voters,"
International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 747-766, November.
- Yair Tauman & Artyom Jelnov, 2012. "Voting Power and Proportional Representation of Voters," Department of Economics Working Papers 12-04, Stony Brook University, Department of Economics.
- Houy, Nicolas & Zwicker, William S., 2014.
"The geometry of voting power: Weighted voting and hyper-ellipsoids,"
Games and Economic Behavior, Elsevier, vol. 84(C), pages 7-16.
- Nicolas Houy & William S. Zwicker, 2013. "The geometry of voting power : weighted voting and hyper-ellipsoids," Working Papers halshs-00772953, HAL.
- Nicolas Houy & William S. Zwicker, 2014. "The geometry of voting power: weighted voting and hyper-ellipsoids," Post-Print halshs-00926969, HAL.
- Dennis Leech, 2013. "Power indices in large voting bodies," Public Choice, Springer, vol. 155(1), pages 61-79, April.
- Sascha Kurz & Stefan Napel, 2014.
"Heuristic and exact solutions to the inverse power index problem for small voting bodies,"
Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
- Sascha Kurz & Stefan Napel, 2012. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Jena Economics Research Papers 2012-045, Friedrich-Schiller-University Jena.
- Kurz, Sascha & Maaser, Nicola & Napel, Stefan, 2018. "Fair representation and a linear Shapley rule," Games and Economic Behavior, Elsevier, vol. 108(C), pages 152-161.
- Michel Le Breton & Dominique Lepelley, 2014.
"Une analyse de la loi électorale du 29 juin 1820,"
Revue économique, Presses de Sciences-Po, vol. 65(3), pages 469-518.
- Le Breton, Michel & Lepelley, Dominique, 2012. "Une Analyse de la Loi Electorale du 29 Juin 1820," TSE Working Papers 12-312, Toulouse School of Economics (TSE).
- Le Breton, Michel & Lepelley, Dominique, 2012. "Une Analyse de la Loi Electorale du 29 Juin 1820," IDEI Working Papers 721, Institut d'Économie Industrielle (IDEI), Toulouse.
- Michel Le Breton & Dominique Lepelley, 2014. "Une analyse de la loi électorale du 29 juin 1820," Post-Print hal-01243411, HAL.
- de Mouzon, Olivier & Laurent, Thibault & Le Breton, Michel & Moyouwou, Issofa, 2020. "“One Man, One Vote” Part 1: Electoral Justice in the U.S. Electoral College: Banzhaf and Shapley/Shubik versus May," TSE Working Papers 20-1074, Toulouse School of Economics (TSE).
- Leech, Dennis, 2010. "Power Indices in Large Voting Bodies," Economic Research Papers 270996, University of Warwick - Department of Economics.
- Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
- Zaporozhets, Vera, 2015. "Power Distribution in French River Basin Committees," TSE Working Papers 15-558, Toulouse School of Economics (TSE).
- N. Maaser, 2017. "Simple vs. Sophisticated Rules for the Allocation of Voting Weights," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 34(1), pages 67-78, April.
- Tanaka, Masato & Matsui, Tomomi, 2022. "Pseudo polynomial size LP formulation for calculating the least core value of weighted voting games," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 47-51.
- René van den Brink & Agnieszka Rusinowska, 2017.
"The degree measure as utility function over positions in networks,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01592181, HAL.
- Rene (J.R.) van den Brink & Agnieszka Rusinowska, 2017. "The Degree Measure as Utility Function over Positions in Networks," Tinbergen Institute Discussion Papers 17-065/II, Tinbergen Institute.
- René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Documents de travail du Centre d'Economie de la Sorbonne 17035, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Post-Print halshs-01592181, HAL.
- Boratyn, Daria & Kirsch, Werner & Słomczyński, Wojciech & Stolicki, Dariusz & Życzkowski, Karol, 2020. "Average weights and power in weighted voting games," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 90-99.
- Ines Lindner, 2012. "Annick Laruelle and Federico Valenciano: Voting and collective decision-making," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 161-179, January.
- McQuillin, Ben & Sugden, Robert, 2018. "Balanced externalities and the Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 81-92.
- Michel Le Breton & Karine Van Der Straeten, 2017.
"Alliances Électorales et Gouvernementales : La Contribution de la Théorie des Jeux Coopératifs à la Science Politique,"
Revue d'économie politique, Dalloz, vol. 127(4), pages 637-736.
- Le Breton, Michel & Van Der Straeten, Karine, 2017. "Alliances Electorales et Gouvernementales : La Contribution de la Théorie des Jeux Coopératifs à la Science Politique," TSE Working Papers 17-789, Toulouse School of Economics (TSE), revised Jun 2017.
- Sascha Kurz, 2014. "Measuring Voting Power in Convex Policy Spaces," Economies, MDPI, vol. 2(1), pages 1-33, March.
More about this item
Keywords
Weighted voting; Power measurement; Penrose–Banzhaf index; Limit results;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:88:y:2020:i:2:d:10.1007_s11238-019-09726-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.