IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v50y2018i3d10.1007_s11156-017-0650-0.html
   My bibliography  Save this article

Data analytic approach for manipulation detection in stock market

Author

Listed:
  • Jia Zhai

    (University of Salford)

  • Yi Cao

    (University of Surrey)

  • Xuemei Ding

    (Ulster University
    Fujian Normal University)

Abstract

The term “price manipulation” is used to describe the actions of “rogue” traders who employ carefully designed trading tactics to incur equity prices up or down to make profit. Such activities damage the proper functioning, integrity, and stability of the financial markets. In response to that, the regulators proposed new regulatory guidance to prohibit such activities on the financial markets. However, due to the lack of existing research and the implementation complexity, the application of those regulatory guidance, i.e. MiFID II in EU, is postponed to 2018. The existing studies exploring this issue either focus on empirical analysis of such cases, or propose detection models based on certain assumptions. The effective methods, based on analysing trading behaviour data, are not yet studied. This paper seeks to address that gap, and provides two data analytics based models. The first one, static model, detects manipulative behaviours through identifying abnormal patterns of trading activities. The activities are represented by transformed limit orders, in which the transformation method is proposed for partially reducing the non-stationarity nature of the financial data. The second one is hidden Markov model based dynamic model, which identifies the sequential and contextual changes in trading behaviours. Both models are evaluated using real stock tick data, which demonstrate their effectiveness on identifying a range of price manipulation scenarios, and outperforming the selected benchmarks. Thus, both models are shown to make a substantial contribution to the literature, and to offer a practical and effective approach to the identification of market manipulation.

Suggested Citation

  • Jia Zhai & Yi Cao & Xuemei Ding, 2018. "Data analytic approach for manipulation detection in stock market," Review of Quantitative Finance and Accounting, Springer, vol. 50(3), pages 897-932, April.
  • Handle: RePEc:kap:rqfnac:v:50:y:2018:i:3:d:10.1007_s11156-017-0650-0
    DOI: 10.1007/s11156-017-0650-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11156-017-0650-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-017-0650-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aitken, Michael & Cumming, Douglas & Zhan, Feng, 2015. "High frequency trading and end-of-day price dislocation," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 330-349.
    2. Fredj Jawadi & Waël Louhichi & Abdoulkarim Idi Cheffou & Rivo Randrianarivony, 2016. "Intraday jumps and trading volume: a nonlinear Tobit specification," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1167-1186, November.
    3. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    4. Lee, Eun Jung & Eom, Kyong Shik & Park, Kyung Suh, 2013. "Microstructure-based manipulation: Strategic behavior and performance of spoofing traders," Journal of Financial Markets, Elsevier, vol. 16(2), pages 227-252.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2009. "A new indicator of imminent occurrence of drawdown in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3563-3571.
    7. Edward Chow & Chung-Wen Hung & Christine Liu & Cheng-Yi Shiu, 2013. "Expiration day effects and market manipulation: evidence from Taiwan," Review of Quantitative Finance and Accounting, Springer, vol. 41(3), pages 441-462, October.
    8. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    9. Cumming, Douglas & Johan, Sofia & Li, Dan, 2011. "Exchange trading rules and stock market liquidity," Journal of Financial Economics, Elsevier, vol. 99(3), pages 651-671, March.
    10. Rajesh K. Aggarwal & Guojun Wu, 2006. "Stock Market Manipulations," The Journal of Business, University of Chicago Press, vol. 79(4), pages 1915-1954, July.
    11. Lee, Chien-Chiang & Lee, Jun-De & Lee, Chi-Chuan, 2010. "Stock prices and the efficient market hypothesis: Evidence from a panel stationary test with structural breaks," Japan and the World Economy, Elsevier, vol. 22(1), pages 49-58, January.
    12. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    13. Yu Huang & Yao Cheng, 2015. "Stock manipulation and its effects: pump and dump versus stabilization," Review of Quantitative Finance and Accounting, Springer, vol. 44(4), pages 791-815, May.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rojas-de-Gracia, María-Mercedes & Casado-Molina, Ana-María & Alarcón-Urbistondo, Pilar, 2021. "Relationship between reputational aspects of companies and their share price in the online environment," Technology in Society, Elsevier, vol. 64(C).
    2. Sulaiman Al-Jassar, 2019. "Fundamental and Technical Trading in the Emerging Market of an Oil-Based Economy," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-19, March.
    3. Hugo Núñez Delafuente & César A. Astudillo & David Díaz, 2024. "Ensemble Approach Using k-Partitioned Isolation Forests for the Detection of Stock Market Manipulation," Mathematics, MDPI, vol. 12(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jie & Wu, Chonglin & Yuan, Lin & Liu, Jia, 2022. "Opening price manipulation and its value influences," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Cumming, Douglas & Dannhauser, Robert & Johan, Sofia, 2015. "Financial market misconduct and agency conflicts: A synthesis and future directions," Journal of Corporate Finance, Elsevier, vol. 34(C), pages 150-168.
    3. Stephen Kawas & Everton Dockery, 2023. "What do we know about the stock markets’ reaction to regulatory announcements regarding financial institutions? Evidence from UK financial institutions," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 31-67, January.
    4. Duong, Huu Nhan & Goyal, Abhinav & Kallinterakis, Vasileios & Veeraraghavan, Madhu, 2021. "Market manipulation rules and IPO underpricing," Journal of Corporate Finance, Elsevier, vol. 67(C).
    5. Christos Alexakis & Vasileios Pappas & Emmanouil Skarmeas, 2021. "Market abuse under different close price determination mechanisms: A European case," Post-Print hal-03182927, HAL.
    6. Jawadi, Fredj & Louhichi, Waël & Ameur, Hachmi Ben & Cheffou, Abdoulkarim Idi, 2016. "On oil-US exchange rate volatility relationships: An intraday analysis," Economic Modelling, Elsevier, vol. 59(C), pages 329-334.
    7. Kemme, David M. & McInish, Thomas H. & Zhang, Jiang, 2022. "Market fairness and efficiency: Evidence from the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 134(C).
    8. Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
    9. Syed Qasim Shah & Izlin Ismail & Aidial Rizal bin Shahrin, 2020. "Heterogeneous investors and deterioration of market integrity: an analysis of market manipulation cases," Journal of Financial Crime, Emerald Group Publishing Limited, vol. 30(2), pages 389-403, May.
    10. Alexakis, Christos & Pappas, Vasileios & Skarmeas, Emmanouil, 2021. "Market abuse under different close price determination mechanisms: A European case," International Review of Financial Analysis, Elsevier, vol. 74(C).
    11. Aitken, Michael & Cumming, Douglas & Zhan, Feng, 2015. "Exchange trading rules, surveillance and suspected insider trading," Journal of Corporate Finance, Elsevier, vol. 34(C), pages 311-330.
    12. Kadıoğlu, Eyüp & Frömmel, Michael, 2022. "Manipulation in the bond market and the role of investment funds: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    13. Eun Jung Lee & Yu Kyung Lee & Ryumi Kim, 2024. "Profitability and herding of trade-based pump-and-dump manipulation," Applied Economics, Taylor & Francis Journals, vol. 56(20), pages 2375-2385, April.
    14. Imisiker, Serkan & Tas, Bedri Kamil Onur, 2018. "Wash trades as a stock market manipulation tool," Journal of Behavioral and Experimental Finance, Elsevier, vol. 20(C), pages 92-98.
    15. Cumming, Douglas & Ji, Shan & Peter, Rejo & Tarsalewska, Monika, 2020. "Market manipulation and innovation," Journal of Banking & Finance, Elsevier, vol. 120(C).
    16. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    17. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    18. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    19. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    20. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.

    More about this item

    Keywords

    Stock manipulation; Data analytics; Hidden Markov model;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:50:y:2018:i:3:d:10.1007_s11156-017-0650-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.