IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v15y2015i3p655-676.html
   My bibliography  Save this article

Improving the Convergence of Simulation-based Dynamic Traffic Assignment Methodologies

Author

Listed:
  • Michael Levin
  • Matt Pool
  • Travis Owens
  • Natalia Juri
  • S. Travis Waller

Abstract

The ability of simulation-based dynamic traffic assignment (SBDTA) models to produce reliable solutions is crucial for practical applications, particularly for those involving the comparison of modeling results across multiple scenarios. This work reviews, implements and compares novel and existing techniques for finding equilibrium solutions for SBDTA problems, focusing on their convergence pattern and stability of the results. The considered methodologies, ranging from MSA and gradient-based heuristics to column generation frameworks and partial demand loading schemes, have not been previously compared side-to-side in the literature. This research uses a single SBDTA platform to conduct such comparison on three real networks, including one with more than 200,000 trips. Most analyzed approaches were found to require a similar number of simulation runs to reach near-equilibrium solutions. However, results suggest that the quality of the results for a given convergence level may vary across methodologies. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Michael Levin & Matt Pool & Travis Owens & Natalia Juri & S. Travis Waller, 2015. "Improving the Convergence of Simulation-based Dynamic Traffic Assignment Methodologies," Networks and Spatial Economics, Springer, vol. 15(3), pages 655-676, September.
  • Handle: RePEc:kap:netspa:v:15:y:2015:i:3:p:655-676
    DOI: 10.1007/s11067-014-9242-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-014-9242-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-014-9242-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren B. Powell & Yosef Sheffi, 1982. "The Convergence of Equilibrium Algorithms with Predetermined Step Sizes," Transportation Science, INFORMS, vol. 16(1), pages 45-55, February.
    2. Florian, Michael & Mahut, Michael & Tremblay, Nicolas, 2008. "Application of a simulation-based dynamic traffic assignment model," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1381-1392, September.
    3. Iryo, Takamasa, 2011. "Multiple equilibria in a dynamic traffic network," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 867-879, July.
    4. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    5. Mounce, Richard & Carey, Malachy, 2011. "Route swapping in dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 102-111, January.
    6. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    7. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    8. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    9. Lu, Chung-Cheng & Mahmassani, Hani S. & Zhou, Xuesong, 2009. "Equivalent gap function-based reformulation and solution algorithm for the dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 345-364, March.
    10. Torbjörn Larsson & Michael Patriksson, 1992. "Simplicial Decomposition with Disaggregated Representation for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 26(1), pages 4-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    2. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Timmermans, Harry, 2019. "Tolerance-based strategies for extending the column generation algorithm to the bounded rational dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 102-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    2. Babak Javani & Abbas Babazadeh, 2020. "Path-Based Dynamic User Equilibrium Model with Applications to Strategic Transportation Planning," Networks and Spatial Economics, Springer, vol. 20(2), pages 329-366, June.
    3. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    4. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    5. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2020. "Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 199-223.
    6. Ban, Xuegang (Jeff) & Liu, Henry X. & Ferris, Michael C. & Ran, Bin, 2008. "A link-node complementarity model and solution algorithm for dynamic user equilibria with exact flow propagations," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 823-842, November.
    7. Lu, Chung-Cheng & Mahmassani, Hani S. & Zhou, Xuesong, 2009. "Equivalent gap function-based reformulation and solution algorithm for the dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 345-364, March.
    8. Richard Mounce & Malachy Carey, 2015. "On the Convergence of the Method of Successive Averages for Calculating Equilibrium in Traffic Networks," Transportation Science, INFORMS, vol. 49(3), pages 535-542, August.
    9. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    10. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    11. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    12. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    13. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    14. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Timmermans, Harry, 2019. "Tolerance-based strategies for extending the column generation algorithm to the bounded rational dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 102-121.
    15. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    16. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    18. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    19. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    20. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:15:y:2015:i:3:p:655-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.