IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v62y2024i3d10.1007_s11123-023-00716-w.html
   My bibliography  Save this article

Partially Convex Production Technology and Efficiency Measurement

Author

Listed:
  • Sung Ko Li

    (Hong Kong Shue Yan University
    Hefei University of Technology)

  • Chun Kei Tsang

    (Hong Kong Shue Yan University
    Hong Kong Baptist University)

  • Shu Kam Lee

    (Hong Kong Shue Yan University)

Abstract

Economists tend to believe that production technology should exhibit increasing returns to scale first and then constant and finally decreasing returns to scale, called regular variable returns to scale (RVRS) in this paper. Further, a special pattern of RVRS production technology when there is only one output is the production function that has an S-shaped curve along any ray of inputs from the origin. In the literature on efficiency analysis, the most frequently used empirical technology is the variable returns to scale (VRS) production technology. Although it exhibits RVRS, it is unable to model nonconvex production technologies, such as the S-shaped production function. Recently, a new empirical production technology has been introduced to capture RVRS with partial convexity. This paper explores its relationship with efficiency measurement. Furthermore, a novel empirical production technology that can better capture the characteristics of the S-shaped production function is proposed. These two new production technologies provide better alternatives to the commonly used Free Disposal Hull (FDH) production technology in non-convex production with RVRS. Our new production technology is illustrated using US manufacturing industry data. If one believes that the production technology is partially convex and exhibits RVRS, it is found that the conventional VRS production technology overestimates the technical inefficiency of small production units under this belief.

Suggested Citation

  • Sung Ko Li & Chun Kei Tsang & Shu Kam Lee, 2024. "Partially Convex Production Technology and Efficiency Measurement," Journal of Productivity Analysis, Springer, vol. 62(3), pages 303-320, December.
  • Handle: RePEc:kap:jproda:v:62:y:2024:i:3:d:10.1007_s11123-023-00716-w
    DOI: 10.1007/s11123-023-00716-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-023-00716-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-023-00716-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    2. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    3. Daouia, Abdelaati & Simar, Léopold, 2005. "Robust nonparametric estimators of monotone boundaries," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 311-331, October.
    4. AGRELL, Per J. & BOGETOFT, Peter & BROCK, Michael & TIND, Jorgen, 2005. "Efficiency evaluation with convex pairs," LIDAM Reprints CORE 1828, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Per Agrell & Jørgen Tind, 2001. "A Dual Approach to Nonconvex Frontier Models," Journal of Productivity Analysis, Springer, vol. 16(2), pages 129-147, September.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Walter Briec & Kristiaan Kerstens & Philippe Venden Eeckaut, 2004. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity," Journal of Economics, Springer, vol. 81(2), pages 155-192, February.
    8. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    9. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161, November.
    10. Peter Bogetoft & Joseph M. Tama & Jørgen Tind, 2000. "Convex Input and Output Projections of Nonconvex Production Possibility Sets," Management Science, INFORMS, vol. 46(6), pages 858-869, June.
    11. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
    12. Friedman, Daniel, 1989. "The S-Shaped Value Function as a Constrained Optimum," American Economic Review, American Economic Association, vol. 79(5), pages 1243-1248, December.
    13. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    14. Li, Sung-Ko, 2019. "A nonparametric test of quasiconcave production function with variable returns to scale," Journal of Mathematical Economics, Elsevier, vol. 82(C), pages 160-170.
    15. Olesen, O.B. & Ruggiero, J., 2022. "The hinging hyperplanes: An alternative nonparametric representation of a production function," European Journal of Operational Research, Elsevier, vol. 296(1), pages 254-266.
    16. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    17. Olesen, Ole B. & Ruggiero, John, 2014. "Maintaining the Regular Ultra Passum Law in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 235(3), pages 798-809.
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Paul Chavas & Kwansoo Kim, 2015. "Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach," Journal of Productivity Analysis, Springer, vol. 43(1), pages 59-74, February.
    2. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    3. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    4. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    5. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    6. Fukuyama, Hirofumi & Shiraz, Rashed Khanjani, 2015. "Cost-effectiveness measures on convex and nonconvex technologies," European Journal of Operational Research, Elsevier, vol. 246(1), pages 307-319.
    7. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    8. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    9. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2022. "Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 18, pages 721-754, Springer.
    10. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.
    11. Victor Podinovski, 2004. "Efficiency and Global Scale Characteristics on the “No Free Lunch” Assumption Only," Journal of Productivity Analysis, Springer, vol. 22(3), pages 227-257, November.
    12. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    13. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    14. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
    16. H Leleu, 2009. "Mixing DEA and FDH models together," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1730-1737, December.
    17. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    18. Thierry Post & Laurens Cherchye & Timo Kuosmanen, 2002. "Nonparametric Efficiency Estimation In Stochastic Environments," Operations Research, INFORMS, vol. 50(4), pages 645-655, August.
    19. Walter Briec & Kristiaan Kerstens, 2006. "Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 135-166, June.
    20. Manh D. Pham & Valentin Zelenyuk, 2017. "Convexity, Disposability and Returns to Scale in Production Analysis," CEPA Working Papers Series WP042017, School of Economics, University of Queensland, Australia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:62:y:2024:i:3:d:10.1007_s11123-023-00716-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.