IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v27y2007i1p1-12.html
   My bibliography  Save this article

Stochastic frontier models with multiple time-varying individual effects

Author

Listed:
  • Seung Ahn
  • Young Lee
  • Peter Schmidt

Abstract

This paper proposes a flexible time-varying stochastic frontier model. Similarly to Lee and Schmidt [1993, In: Fried H, Lovell CAK, Schmidt S (eds) The measurement of productive efficiency: techniques and applications. Oxford University Press, Oxford], we assume that individual firms’ technical inefficiencies vary over time. However, the model, which we call the “multiple time-varying individual effects” model, is more general in that it allows multiple factors determining firm-specific time-varying technical inefficiencies. This allows the temporal pattern of inefficiency to vary over firms. The number of such factors can be consistently estimated. The model is applied to data on Indonesian rice farms, and the changes in the efficiency rankings of farms over time demonstrate the model’s flexibility. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Seung Ahn & Young Lee & Peter Schmidt, 2007. "Stochastic frontier models with multiple time-varying individual effects," Journal of Productivity Analysis, Springer, vol. 27(1), pages 1-12, February.
  • Handle: RePEc:kap:jproda:v:27:y:2007:i:1:p:1-12
    DOI: 10.1007/s11123-006-0020-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-006-0020-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-006-0020-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    2. Han, Chirok & Orea, Luis & Schmidt, Peter, 2005. "Estimation of a panel data model with parametric temporal variation in individual effects," Journal of Econometrics, Elsevier, vol. 126(2), pages 241-267, June.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    5. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    6. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    7. Sangho Kim & Young Hoon Lee, 2006. "The productivity debate of East Asia revisited: a stochastic frontier approach," Applied Economics, Taylor & Francis Journals, vol. 38(14), pages 1697-1706.
    8. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    9. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    10. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    11. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Young Hoon, 2006. "A stochastic production frontier model with group-specific temporal variation in technical efficiency," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1616-1630, November.
    2. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    3. Han, Chirok & Orea, Luis & Schmidt, Peter, 2005. "Estimation of a panel data model with parametric temporal variation in individual effects," Journal of Econometrics, Elsevier, vol. 126(2), pages 241-267, June.
    4. Lee, Young Hoon, 2010. "Group-specific stochastic production frontier models with parametric specifications," European Journal of Operational Research, Elsevier, vol. 200(2), pages 508-517, January.
    5. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    6. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    7. Kim, Sangho & Park, Donghyun & Park, Jong-Ho, 2009. "Productivity Growth in Different Firm Sizes in the Malaysian Manufacturing Sector: An Empirical Investigation," ADB Economics Working Paper Series 176, Asian Development Bank.
    8. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    9. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    10. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    11. William C. Horrace & Kurt E. Schnier, 2010. "Fixed-Effect Estimation of Highly Mobile Production Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1432-1445.
    12. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
    13. Bao Hoang Nguyen & Zhichao Wang & Valentin Zelenyuk, 2023. "Efficiency of Queensland Public Hospitals via Spatial Panel Stochastic Frontier Models," CEPA Working Papers Series WP102023, School of Economics, University of Queensland, Australia.
    14. Binlei Gong & Robin C. Sickles, 2020. "Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(2), pages 243-263, April.
    15. Robin C. Sickles & Jiaqi Hao & Chenjun Shang, 2014. "Panel data and productivity measurement: an analysis of Asian productivity trends," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 211-231, August.
    16. Kneip, Alois & Sickles, Robin C. & Song, Wonho, 2012. "A New Panel Data Treatment For Heterogeneity In Time Trends," Econometric Theory, Cambridge University Press, vol. 28(3), pages 590-628, June.
    17. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    18. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    19. Hsu, Chih-Chiang & Lin, Chang-Ching & Yin, Shou-Yung, 2012. "Estimation of a panel stochastic frontier model with unobserved common shocks," MPRA Paper 37313, University Library of Munich, Germany.
    20. Kodjo Adandohoin, 2021. "Tax transition in developing countries: do value added tax and excises really work?," International Economics and Economic Policy, Springer, vol. 18(2), pages 379-424, May.

    More about this item

    Keywords

    Time-varying technical efficiency; Stochastic frontiers; Panel data; C51; D24;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:27:y:2007:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.