IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i2p508-517.html
   My bibliography  Save this article

Group-specific stochastic production frontier models with parametric specifications

Author

Listed:
  • Lee, Young Hoon

Abstract

This paper develops a stochastic frontier model that not only focuses more on group-specific temporal variations in technical efficiency rather than individual temporal variations, but also allows for a parametric function of the time-varying coefficient of the efficiency factor. We derived the concentrated least squares estimator and its asymptotic properties. When applied to the Penn World data set, the group-specific models yield much more variation in the temporal patterns of efficiency across countries. This application demonstrates the feasibility of applying a group-specific stochastic frontier model with a parametric function of temporal pattern to a real empirical analysis.

Suggested Citation

  • Lee, Young Hoon, 2010. "Group-specific stochastic production frontier models with parametric specifications," European Journal of Operational Research, Elsevier, vol. 200(2), pages 508-517, January.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:2:p:508-517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00030-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Chirok & Orea, Luis & Schmidt, Peter, 2005. "Estimation of a panel data model with parametric temporal variation in individual effects," Journal of Econometrics, Elsevier, vol. 126(2), pages 241-267, June.
    2. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    3. Sangho Kim & Young Hoon Lee, 2006. "The productivity debate of East Asia revisited: a stochastic frontier approach," Applied Economics, Taylor & Francis Journals, vol. 38(14), pages 1697-1706.
    4. Alan B. Krueger, 1999. "Measuring Labor's Share," American Economic Review, American Economic Association, vol. 89(2), pages 45-51, May.
    5. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    6. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    7. Basu, Susanto & Fernald, John G, 1997. "Returns to Scale in U.S. Production: Estimates and Implications," Journal of Political Economy, University of Chicago Press, vol. 105(2), pages 249-283, April.
    8. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    9. Alan Krueger, 1999. "Measuring Labor's Share," Working Papers 792, Princeton University, Department of Economics, Industrial Relations Section..
    10. Lee, Young Hoon, 2006. "A stochastic production frontier model with group-specific temporal variation in technical efficiency," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1616-1630, November.
    11. Good, David H. & Roller, Lars-Hendrik & Sickles, Robin C., 1995. "Airline efficiency differences between Europe and the US: Implications for the pace of EC integration and domestic regulation," European Journal of Operational Research, Elsevier, vol. 80(3), pages 508-518, February.
    12. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    13. Robert Summers & Alan Heston, 1991. "The Penn World Table (Mark 5): An Expanded Set of International Comparisons, 1950–1988," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 327-368.
    14. repec:fth:prinin:413 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young H. Lee, 2014. "Stochastic Frontier Models Using GAUSS," Working Papers 1403, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    2. Badunenko, Oleg & Kumbhakar, Subal C., 2016. "When, where and how to estimate persistent and transient efficiency in stochastic frontier panel data models," European Journal of Operational Research, Elsevier, vol. 255(1), pages 272-287.
    3. William Horrace & Seth Richards-Shubik & Ian Wright, 2015. "Expected efficiency ranks from parametric stochastic frontier models," Empirical Economics, Springer, vol. 48(2), pages 829-848, March.
    4. Yip, Tsz Leung & Sun, Xin Yu & Liu, John J., 2011. "Group and individual heterogeneity in a stochastic frontier model: Container terminal operators," European Journal of Operational Research, Elsevier, vol. 213(3), pages 517-525, September.
    5. Lin, Winston T. & Chen, Yueh H. & Shao, Benjamin B.M., 2015. "Assessing the business values of information technology and e-commerce independently and jointly," European Journal of Operational Research, Elsevier, vol. 245(3), pages 815-827.
    6. Wheat, Phill & Smith, Andrew, 2012. "Is the choice of (t−T) in Battese and Coelli (1992) type stochastic frontier models innocuous? Observations and generalisations," Economics Letters, Elsevier, vol. 116(3), pages 291-294.
    7. Lin, Winston T. & Chuang, Chia-Hung, 2013. "Investigating and comparing the dynamic patterns of the business value of information technology over time," European Journal of Operational Research, Elsevier, vol. 228(1), pages 249-261.
    8. Zhiguang ZHANG & Haiqing HU & Winston T. LIN, 2019. "Analyzing the Impacts of Unobserved National Characteristics on Economic Performance of Information Technology based on a Partial Adjustment Approach With Dynamic and Variable Speed of Adjustment," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 128-142, March.
    9. Tsionas, Mike G., 2017. "Microfoundations for stochastic frontiers," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1165-1170.
    10. Lin, Winston T. & Kao, Ta-Wei (Daniel), 2014. "The partial adjustment valuation approach with dynamic and variable speeds of adjustment to evaluating and measuring the business value of information technology," European Journal of Operational Research, Elsevier, vol. 238(1), pages 208-220.
    11. Anaya, Karim L. & Pollitt, Michael G., 2017. "Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1078-1094.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Young Hoon, 2006. "A stochastic production frontier model with group-specific temporal variation in technical efficiency," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1616-1630, November.
    2. Seung Ahn & Young Lee & Peter Schmidt, 2007. "Stochastic frontier models with multiple time-varying individual effects," Journal of Productivity Analysis, Springer, vol. 27(1), pages 1-12, February.
    3. William Horrace & Seth Richards-Shubik & Ian Wright, 2015. "Expected efficiency ranks from parametric stochastic frontier models," Empirical Economics, Springer, vol. 48(2), pages 829-848, March.
    4. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
    5. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    6. William C. Horrace & Kurt E. Schnier, 2010. "Fixed-Effect Estimation of Highly Mobile Production Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1432-1445.
    7. Young Hoon Lee & David Berri, 2008. "A Re‐Examination Of Production Functions And Efficiency Estimates For The National Basketball Association," Scottish Journal of Political Economy, Scottish Economic Society, vol. 55(1), pages 51-66, February.
    8. Han, Chirok & Orea, Luis & Schmidt, Peter, 2005. "Estimation of a panel data model with parametric temporal variation in individual effects," Journal of Econometrics, Elsevier, vol. 126(2), pages 241-267, June.
    9. Pavlos Almanidis & Giannis Karagiannis & Robin Sickles, 2015. "Semi-nonparametric spline modifications to the Cornwell–Schmidt–Sickles estimator: an analysis of US banking productivity," Empirical Economics, Springer, vol. 48(1), pages 169-191, February.
    10. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    11. Kim, Sangho & Park, Donghyun & Park, Jong-Ho, 2009. "Productivity Growth in Different Firm Sizes in the Malaysian Manufacturing Sector: An Empirical Investigation," ADB Economics Working Paper Series 176, Asian Development Bank.
    12. HSIAO, Cheng & SHEN, Yan & BIAN, Wenlong, 2015. "Evaluating the effectiveness of China's financial reform—The efficiency of China's domestic banks," China Economic Review, Elsevier, vol. 35(C), pages 70-82.
    13. Smith, Andrew S.J., 2012. "The application of stochastic frontier panel models in economic regulation: Experience from the European rail sector," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 503-515.
    14. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    15. Chen, Yueh H. & Lin, Winston T., 2009. "Analyzing the relationships between information technology, inputs substitution and national characteristics based on CES stochastic frontier production models," International Journal of Production Economics, Elsevier, vol. 120(2), pages 552-569, August.
    16. Scotti, Davide & Volta, Nicola, 2017. "Profitability change in the global airline industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 1-12.
    17. Peng Shi & Wei Zhang, 2011. "Time-varying X-efficiency: evidence from US property casualty insurers," Applied Economics Letters, Taylor & Francis Journals, vol. 18(3), pages 217-221.
    18. Young Hoon Lee, 2009. "Frontier Models and their Application to the Sports Industry," Working Papers 0903, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised 2009.
    19. Rodriguez-Alvarez, Ana & Tovar, Beatriz & Trujillo, Lourdes, 2007. "Firm and time varying technical and allocative efficiency: An application to port cargo handling firms," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 149-161, September.
    20. Kim, Jung Woo & Lee, Jeong Yeon & Kim, Jae Yong & Lee, Hoe Kyung, 2006. "Sources of productive efficiency: International comparison of iron and steel firms," Resources Policy, Elsevier, vol. 31(4), pages 239-246, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:2:p:508-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.