IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v11y2009i3p209-225.html
   My bibliography  Save this article

A sampling approach to estimate the log determinant used in spatial likelihood problems

Author

Listed:
  • R. Pace
  • James LeSage

Abstract

No abstract is available for this item.

Suggested Citation

  • R. Pace & James LeSage, 2009. "A sampling approach to estimate the log determinant used in spatial likelihood problems," Journal of Geographical Systems, Springer, vol. 11(3), pages 209-225, September.
  • Handle: RePEc:kap:jgeosy:v:11:y:2009:i:3:p:209-225
    DOI: 10.1007/s10109-009-0087-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-009-0087-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-009-0087-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pace, R. Kelley & LeSage, James P., 2004. "Chebyshev approximation of log-determinants of spatial weight matrices," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 179-196, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    2. Yan Chen & Youran Qi & Qing Liu & Peter Chien, 2018. "Sequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networks," Quantitative Marketing and Economics (QME), Springer, vol. 16(4), pages 409-440, December.
    3. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    4. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    5. Konno, Akio & Kato, Hironori & Takeuchi, Wataru & Kiguchi, Riku, 2021. "Global evidence on productivity effects of road infrastructure incorporating spatial spillover effects," Transport Policy, Elsevier, vol. 103(C), pages 167-182.
    6. Piras, Gianfranco, 2010. "sphet: Spatial Models with Heteroskedastic Innovations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i01).
    7. Monchuk, Daniel C. & Miranowski, John A., 2003. "Spatial Labor Markets And Technology Spillovers - Analysis From Us Midwest," 2003 Annual meeting, July 27-30, Montreal, Canada 22250, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
    9. repec:asg:wpaper:1013 is not listed on IDEAS
    10. Egger, Peter & Larch, Mario & Pfaffermayr, Michael & Walde, Janette, 2008. "The EU's attitude towards Eastern Enlargement in space," Journal of Comparative Economics, Elsevier, vol. 36(1), pages 142-156, March.
    11. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    12. Harman, Radoslav & Filová, Lenka, 2014. "Computing efficient exact designs of experiments using integer quadratic programming," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1159-1167.
    13. Luc Anselin, 2012. "From SpaceStat to CyberGIS," International Regional Science Review, , vol. 35(2), pages 131-157, April.
    14. Osman Dogan & Suleyman Taspinar, 2013. "GMM Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," Working Papers 1, City University of New York Graduate Center, Ph.D. Program in Economics.
    15. repec:asg:wpaper:1047 is not listed on IDEAS
    16. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    17. Yehua Dennis Wei & Weiye Xiao & Ming Wen & Ran Wei, 2016. "Walkability, Land Use and Physical Activity," Sustainability, MDPI, vol. 8(1), pages 1-16, January.
    18. Giuseppe Arbia & Marco Bee & Giuseppe Espa & Flavio Santi, 2014. "Fitting Spatial Econometric Models through the Unilateral Approximation," DEM Discussion Papers 2014/08, Department of Economics and Management.
    19. Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, vol. 3(2), pages 1-22, May.
    20. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    21. Juan C. Duque & Alejandro Betancourt & Freddy Marin, 2013. "An algorithmic approach for simulating realistic irregular lattices," Documentos de Trabajo de Valor Público 10937, Universidad EAFIT.

    More about this item

    Keywords

    Spatial statistics; Spatial autoregression; Maximum likelihood; Sparse matrices; Log-determinants; Spatial econometrics; Parallel processing; C11; C21; C23; R11;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:11:y:2009:i:3:p:209-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.