IDEAS home Printed from https://ideas.repec.org/a/kap/jfsres/v41y2012i3p145-161.html
   My bibliography  Save this article

A Theoretical Framework for Incorporating Scenarios into Operational Risk Modeling

Author

Listed:
  • Bakhodir Ergashev

Abstract

No abstract is available for this item.

Suggested Citation

  • Bakhodir Ergashev, 2012. "A Theoretical Framework for Incorporating Scenarios into Operational Risk Modeling," Journal of Financial Services Research, Springer;Western Finance Association, vol. 41(3), pages 145-161, June.
  • Handle: RePEc:kap:jfsres:v:41:y:2012:i:3:p:145-161
    DOI: 10.1007/s10693-011-0105-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10693-011-0105-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10693-011-0105-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Kabir K. Dutta & David F. Babbel, 2014. "Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 303-334, June.
    3. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azamat Abdymomunov & Atanas Mihov, 2019. "Operational Risk and Risk Management Quality: Evidence from U.S. Bank Holding Companies," Journal of Financial Services Research, Springer;Western Finance Association, vol. 56(1), pages 73-93, August.
    2. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    3. Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
    4. Azamat Abdymomunov & Sharon Blei & Bakhodir Ergashev, 2015. "Integrating Stress Scenarios into Risk Quantification Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 57-79, February.
    5. Azamat Abdymomunov & Filippo Curti, 2020. "Quantifying and Stress Testing Operational Risk with Peer Banks’ Data," Journal of Financial Services Research, Springer;Western Finance Association, vol. 57(3), pages 287-313, June.
    6. Pavel V. Shevchenko & Gareth W. Peters, 2013. "Loss Distribution Approach for Operational Risk Capital Modelling under Basel II: Combining Different Data Sources for Risk Estimation," Papers 1306.1882, arXiv.org.
    7. Pavel Kapinos & Oscar A. Mitnik, 2016. "A Top-down Approach to Stress-testing Banks," Journal of Financial Services Research, Springer;Western Finance Association, vol. 49(2), pages 229-264, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Coşkun Akdeniz, 2021. "Construction of the Monetary Conditions Index with TVP-VAR Model: Empirical Evidence for Turkish Economy," Springer Books, in: Burcu Adıgüzel Mercangöz (ed.), Handbook of Research on Emerging Theories, Models, and Applications of Financial Econometrics, edition 1, pages 215-228, Springer.
    4. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    5. Nima Nonejad, 2013. "Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008," CREATES Research Papers 2013-25, Department of Economics and Business Economics, Aarhus University.
    6. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    8. Sylvia Frühwirth‐Schnatter & Sylvia Kaufmann, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305, April.
    9. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    10. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    11. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    12. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    13. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    14. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    15. Fabrice Murtin, 2007. "The Structural Change and the Endogeneity Bias of the College Premium in the United States 1968-2001"," Working Papers 2007-14, Center for Research in Economics and Statistics.
    16. Chauvet, Marcelle & Potter, Simon, 2010. "Business cycle monitoring with structural changes," International Journal of Forecasting, Elsevier, vol. 26(4), pages 777-793, October.
    17. Efrem Castelnuovo & Kerem Tuzcuoglu & Luis Uzeda, 2024. "Sectoral uncertainty," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    18. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    19. Michael D. Bauer, 2018. "Restrictions on Risk Prices in Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 196-211, April.
    20. Danilo Leiva-Leon & Luis Uzeda, 2023. "Endogenous Time Variation in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 105(1), pages 125-142, January.

    More about this item

    Keywords

    Operational risk; Scenario analysis; Constrained estimation; The Markov chain Monte Carlo method (MCMC); Stochastic dominance; G21; G14; G20;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jfsres:v:41:y:2012:i:3:p:145-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.