IDEAS home Printed from https://ideas.repec.org/a/kap/jfsres/v41y2012i3p145-161.html
   My bibliography  Save this article

A Theoretical Framework for Incorporating Scenarios into Operational Risk Modeling

Author

Listed:
  • Bakhodir Ergashev

Abstract

No abstract is available for this item.

Suggested Citation

  • Bakhodir Ergashev, 2012. "A Theoretical Framework for Incorporating Scenarios into Operational Risk Modeling," Journal of Financial Services Research, Springer;Western Finance Association, vol. 41(3), pages 145-161, June.
  • Handle: RePEc:kap:jfsres:v:41:y:2012:i:3:p:145-161
    DOI: 10.1007/s10693-011-0105-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10693-011-0105-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10693-011-0105-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Kabir K. Dutta & David F. Babbel, 2014. "Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 303-334, June.
    3. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azamat Abdymomunov & Atanas Mihov, 2019. "Operational Risk and Risk Management Quality: Evidence from U.S. Bank Holding Companies," Journal of Financial Services Research, Springer;Western Finance Association, vol. 56(1), pages 73-93, August.
    2. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    3. Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
    4. Azamat Abdymomunov & Sharon Blei & Bakhodir Ergashev, 2015. "Integrating Stress Scenarios into Risk Quantification Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 57-79, February.
    5. Azamat Abdymomunov & Filippo Curti, 2020. "Quantifying and Stress Testing Operational Risk with Peer Banks’ Data," Journal of Financial Services Research, Springer;Western Finance Association, vol. 57(3), pages 287-313, June.
    6. Pavel V. Shevchenko & Gareth W. Peters, 2013. "Loss Distribution Approach for Operational Risk Capital Modelling under Basel II: Combining Different Data Sources for Risk Estimation," Papers 1306.1882, arXiv.org.
    7. Pavel Kapinos & Oscar A. Mitnik, 2016. "A Top-down Approach to Stress-testing Banks," Journal of Financial Services Research, Springer;Western Finance Association, vol. 49(2), pages 229-264, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    4. Sylvia Frühwirth‐Schnatter & Sylvia Kaufmann, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305, April.
    5. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    6. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    7. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    8. Efrem Castelnuovo & Kerem Tuzcuoglu & Luis Uzeda, 2024. "Sectoral uncertainty," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    9. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    10. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    11. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    12. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    13. Christoph Berninger & Almond Stocker & David Rugamer, 2020. "A Bayesian Time-Varying Autoregressive Model for Improved Short- and Long-Term Prediction," Papers 2006.05750, arXiv.org, revised Feb 2021.
    14. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    15. Maheu, John M. & McCurdy, Thomas H., 2009. "How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 95-112.
    16. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2018. "A discrete/continuous choice model on a nonconvex budget set," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 89-113, February.
    17. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    18. Nakajima Jouchi, 2011. "Monetary Policy Transmission under Zero Interest Rates: An Extended Time-Varying Parameter Vector Autoregression Approach," The B.E. Journal of Macroeconomics, De Gruyter, vol. 11(1), pages 1-24, October.
    19. Sarno, Lucio & Valente, Giorgio, 2006. "Deviations from purchasing power parity under different exchange rate regimes: Do they revert and, if so, how?," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3147-3169, November.
    20. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.

    More about this item

    Keywords

    Operational risk; Scenario analysis; Constrained estimation; The Markov chain Monte Carlo method (MCMC); Stochastic dominance; G21; G14; G20;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jfsres:v:41:y:2012:i:3:p:145-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.