IDEAS home Printed from https://ideas.repec.org/a/kap/jeczfn/v99y2010i1p65-92.html
   My bibliography  Save this article

On locally optimal programs in the Robinson–Solow–Srinivasan model

Author

Listed:
  • M. Khan
  • Alexander Zaslavski

Abstract

No abstract is available for this item.

Suggested Citation

  • M. Khan & Alexander Zaslavski, 2010. "On locally optimal programs in the Robinson–Solow–Srinivasan model," Journal of Economics, Springer, vol. 99(1), pages 65-92, February.
  • Handle: RePEc:kap:jeczfn:v:99:y:2010:i:1:p:65-92
    DOI: 10.1007/s00712-009-0102-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00712-009-0102-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00712-009-0102-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirrlees, J. A. & Stern, N. H., 1972. "Fairly good plans," Journal of Economic Theory, Elsevier, vol. 4(2), pages 268-288, April.
    2. Paul A. Samuelson & Robert M. Solow, 1956. "A Complete Capital Model Involving Heterogeneous Capital Goods," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(4), pages 537-562.
    3. Peter Hammond, 1975. "Agreeable Plans With Many Capital Goods," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 42(1), pages 1-14.
    4. David Gale, 1967. "On Optimal Development in a Multi-Sector Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(1), pages 1-18.
    5. Kazuo Nishimura & Makoto Yano, 2012. "Non-linear Dynamics and Chaos in Optimal Growth: An Example," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 127-150, Springer.
    6. Mitra, Tapan & Wan, Henry Jr., 1986. "On the faustmann solution to the forest management problem," Journal of Economic Theory, Elsevier, vol. 40(2), pages 229-249, December.
    7. M. Ali Khan & Tapan Mitra, 2005. "On choice of technique in the Robinson–Solow–Srinivasan model," International Journal of Economic Theory, The International Society for Economic Theory, vol. 1(2), pages 83-110, June.
    8. Lionel W. McKenzie, 2012. "turnpike theory," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    9. M. Ali Khan & Tapan Mitra, 2007. "Optimal Growth In A Two‐Sector Rss Model Without Discounting: A Geometric Investigation," The Japanese Economic Review, Japanese Economic Association, vol. 58(2), pages 191-225, June.
    10. Hammond, Peter J & Kennan, John, 1979. "Uniformly Optimal Infinite Horizon Plans," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 283-296, June.
    11. Mitra, Tapan, 2004. "Intergenerational Equity and the Forest Management Problem," Working Papers 04-17, Cornell University, Center for Analytic Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, M. Ali & Piazza, Adriana, 2011. "Classical turnpike theory and the economics of forestry," Journal of Economic Behavior & Organization, Elsevier, vol. 79(3), pages 194-210, August.
    2. Khan, M. Ali & Piazza, Adriana, 2010. "On the non-existence of optimal programs in the Robinson-Solow-Srinivasan (RSS) model," Economics Letters, Elsevier, vol. 109(2), pages 94-98, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Ali & Zaslavski, Alexander J., 2009. "On existence of optimal programs: The RSS model without concavity assumptions on felicities," Journal of Mathematical Economics, Elsevier, vol. 45(9-10), pages 624-633, September.
    2. Khalifa, Sherif, 2011. "Undiscounted optimal growth with consumable capital and labor-intensive consumption goods," Economic Modelling, Elsevier, vol. 28(4), pages 1673-1682, July.
    3. M. Khan & Alexander Zaslavski, 2007. "On a Uniform Turnpike of the Third Kind in the Robinson-Solow-Srinivasan Model," Journal of Economics, Springer, vol. 92(2), pages 137-166, October.
    4. Khan, M. Ali & Piazza, Adriana, 2011. "Classical turnpike theory and the economics of forestry," Journal of Economic Behavior & Organization, Elsevier, vol. 79(3), pages 194-210, August.
    5. Minako Fujio, 2009. "Optimal Transition Dynamics In The Leontief Two‐Sector Growth Model With Durable Capital: The Case Of Capital Intensive Consumption Goods," The Japanese Economic Review, Japanese Economic Association, vol. 60(4), pages 490-511, December.
    6. Khalifa, Sherif, 2013. "Undiscounted optimal growth with consumable capital and capital-intensive consumption goods," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 118-135.
    7. M. Ali Khan & Adriana Piazza, 2010. "On uniform convergence of undiscounted optimal programs in the Mitra–Wan forestry model: The strictly concave case," International Journal of Economic Theory, The International Society for Economic Theory, vol. 6(1), pages 57-76, March.
    8. Ali Khan, M. & Piazza, Adriana, 2012. "On the Mitra–Wan forestry model: A unified analysis," Journal of Economic Theory, Elsevier, vol. 147(1), pages 230-260.
    9. M. Ali Khan & Tapan Mitra, 2005. "On choice of technique in the Robinson–Solow–Srinivasan model," International Journal of Economic Theory, The International Society for Economic Theory, vol. 1(2), pages 83-110, June.
    10. Adriana Piazza, 2010. "About optimal harvesting policies for a multiple species forest without discounting," Journal of Economics, Springer, vol. 100(3), pages 217-233, July.
    11. Khan, M. Ali & Piazza, Adriana, 2010. "On the non-existence of optimal programs in the Robinson-Solow-Srinivasan (RSS) model," Economics Letters, Elsevier, vol. 109(2), pages 94-98, November.
    12. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    13. Tol, Richard S.J. & Yohe, Gary W., 2009. "The Stern Review: A deconstruction," Energy Policy, Elsevier, vol. 37(3), pages 1032-1040, March.
    14. Metcalf, Christopher J., 2008. "The dynamics of the Stiglitz policy in the RSS model," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 652-661.
    15. Dai, Darong, 2011. "Modeling the minimum time needed to economic maturity," MPRA Paper 40386, University Library of Munich, Germany, revised 31 Jul 2012.
    16. Khan, M. Ali & Mitra, Tapan, 2005. "On topological chaos in the Robinson-Solow-Srinivasan model," Economics Letters, Elsevier, vol. 88(1), pages 127-133, July.
    17. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2015. "On the Mitra–Wan forest management problem in continuous time," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1001-1040.
    18. Majumdar, Mukul, 2009. "Equilibrium and optimality: Some imprints of David Gale," Games and Economic Behavior, Elsevier, vol. 66(2), pages 607-626, July.
    19. Graciela Chichilnisky & Peter J. Hammond & Nicholas Stern, 2020. "Fundamental utilitarianism and intergenerational equity with extinction discounting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(2), pages 397-427, March.
    20. Wolff, Reiner, 1997. "Saddle-point dynamics in non-autonomous models of multisector growth with variable returns to scale," Journal of Mathematical Economics, Elsevier, vol. 27(3), pages 267-282, April.

    More about this item

    Keywords

    Good programs; Locally maximal; Finitely optimal; Optimal; Minimal value-loss; Agreeable; Transversality condition; C62; D90; Q23;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jeczfn:v:99:y:2010:i:1:p:65-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.