IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v27y2024i2d10.1007_s10729-024-09668-5.html
   My bibliography  Save this article

Do adjustment costs constrain public healthcare providers’ technical efficiency? Evidence from the New Zealand Public Healthcare System

Author

Listed:
  • Antony Andrews

    (Ajman University)

  • Grigorios Emvalomatis

    (University of Crete)

Abstract

Efficiency analysis is crucial in healthcare to optimise resource allocation and enhance patient outcomes. However, the prompt adaptation of inputs can be hindered by adjustment costs, which impact Long-Run Technical Efficiency (LRTE). To bridge this gap in healthcare literature, this research employs a Bayesian Dynamic Stochastic Frontier Model to estimate parameters and explore healthcare efficiency dynamics over time. The study reveals the LRTE for New Zealand District Health Boards (DHBs) as 0.76, indicating around 32% more input utilisation due to adjustment costs. Most DHBs exhibit consistent short-run operational efficiency, with the national Short-Run Technical Efficiency (SRTE) very close to the LRTE. Among the tertiary providers, Auckland and Capital & Coast DHBs operate below the LRTE level, setting them apart from other tertiary providers. Similarly, Tairawhiti and West Coast DHBs also fall below the LRTE level, as indicated by their SRTE scores, potentially influenced by their unique healthcare settings and resource challenges. This research brings a new perspective to policy discussions by incorporating the temporal dynamics of decision-making and considering adjustment costs. It underscores the need to balance short-term and long-term technical efficiency, underlining their collective significance in fostering a sustainable and efficient healthcare system in New Zealand.

Suggested Citation

  • Antony Andrews & Grigorios Emvalomatis, 2024. "Do adjustment costs constrain public healthcare providers’ technical efficiency? Evidence from the New Zealand Public Healthcare System," Health Care Management Science, Springer, vol. 27(2), pages 268-283, June.
  • Handle: RePEc:kap:hcarem:v:27:y:2024:i:2:d:10.1007_s10729-024-09668-5
    DOI: 10.1007/s10729-024-09668-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-024-09668-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-024-09668-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    2. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    3. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    4. Evangelia Desli & Subhash Ray & Subal Kumbhakar, 2003. "A dynamic stochastic frontier production model with time-varying efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 623-626.
    5. Aletras, Vassilios & Kontodimopoulos, Nick & Zagouldoudis, Athanasios & Niakas, Dimitris, 2007. "The short-term effect on technical and scale efficiency of establishing regional health systems and general management in Greek NHS hospitals," Health Policy, Elsevier, vol. 83(2-3), pages 236-245, October.
    6. Bruce Hollingsworth, 2008. "The measurement of efficiency and productivity of health care delivery," Health Economics, John Wiley & Sons, Ltd., vol. 17(10), pages 1107-1128, October.
    7. Mitropoulos, Panagiotis & Talias, Μichael A. & Mitropoulos, Ioannis, 2015. "Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: An application to Greek public hospitals," European Journal of Operational Research, Elsevier, vol. 243(1), pages 302-311.
    8. Daniel S. Hamermesh & Gerard A. Pfann, 1996. "Adjustment Costs in Factor Demand," Journal of Economic Literature, American Economic Association, vol. 34(3), pages 1264-1292, September.
    9. Grigorios Emvalomatis, 2012. "Adjustment and unobserved heterogeneity in dynamic stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 37(1), pages 7-16, February.
    10. Annika Herr, 2008. "Cost and technical efficiency of German hospitals: does ownership matter?," Health Economics, John Wiley & Sons, Ltd., vol. 17(9), pages 1057-1071, September.
    11. Zuckerman, Stephen & Hadley, Jack & Iezzoni, Lisa, 1994. "Measuring hospital efficiency with frontier cost functions," Journal of Health Economics, Elsevier, vol. 13(3), pages 255-280, October.
    12. Ioannis Skevas & Grigorios Emvalomatis & Bernhard Brümmer, 2018. "Heterogeneity of Long†run Technical Efficiency of German Dairy Farms: A Bayesian Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(1), pages 58-75, February.
    13. Kumbhakar, Subal C. & Wang, Hung-Jen, 2005. "Estimation of growth convergence using a stochastic production frontier approach," Economics Letters, Elsevier, vol. 88(3), pages 300-305, September.
    14. Valdmanis, Vivian, 1992. "Sensitivity analysis for DEA models : An empirical example using public vs. NFP hospitals," Journal of Public Economics, Elsevier, vol. 48(2), pages 185-205, July.
    15. Michael D. Rosko, 2001. "Cost efficiency of US hospitals: a stochastic frontier approach," Health Economics, John Wiley & Sons, Ltd., vol. 10(6), pages 539-551, September.
    16. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    17. Treadway, Arthur B, 1971. "The Rational Multivariate Flexible Accelerator," Econometrica, Econometric Society, vol. 39(5), pages 845-855, September.
    18. Mette Asmild & Bruce Hollingsworth & Stephen Birch, 2013. "The scale of hospital production in different settings: one size does not fit all," Journal of Productivity Analysis, Springer, vol. 40(2), pages 197-206, October.
    19. Nan Jiang & Antony Andrews, 2020. "Efficiency of New Zealand’s District Health Boards at Providing Hospital Services: A stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 53-68, February.
    20. Sajal Chattopadhyay & Subhash C. Ray, 1996. "Technical, scale, and size efficiency in nursing home care: A nonparametric analysis of Connecticut homes," Health Economics, John Wiley & Sons, Ltd., vol. 5(4), pages 363-373, July.
    21. Louise Allsopp, 2006. "Investigating Health Technology Diffusion in New Zealand – How Does it Spread and Who Stands to Gain?," Treasury Working Paper Series 06/05, New Zealand Treasury.
    22. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    23. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, September.
    24. Seung Ahn & Robin Sickles, 2000. "Estimation of long-run inefficiency levels: a dynamic frontier approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 461-492.
    25. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    26. Friesner, Daniel & Mittelhammer, Ron & Rosenman, Robert, 2013. "Inferring the incidence of industry inefficiency from DEA estimates," European Journal of Operational Research, Elsevier, vol. 224(2), pages 414-424.
    27. Hu, Hsin-Hui & Qi, Qinghui & Yang, Chih-Hai, 2012. "Analysis of hospital technical efficiency in China: Effect of health insurance reform," China Economic Review, Elsevier, vol. 23(4), pages 865-877.
    28. Antonio Afonso & Miguel St. Aubyn, 2011. "Assessing health efficiency across countries with a two-step and bootstrap analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 18(15), pages 1427-1430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP092021, School of Economics, University of Queensland, Australia.
    2. Antony Andrews & Omphile Temoso & Sean Kimpton, 2021. "Persistent and Transient Inefficiency of Australian States and Territories in Providing Public Hospital Services: An Application of Bayesian Stochastic Finite Mixture Frontier Analysis," Economic Papers, The Economic Society of Australia, vol. 40(2), pages 104-115, June.
    3. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    4. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    5. Skevas, Ioannis & Emvalomatis, Grigorios & Brümmer, Bernhard, 2018. "Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms," European Journal of Operational Research, Elsevier, vol. 271(1), pages 250-261.
    6. Dinesh R. Pai & Fatma Pakdil & Nasibeh Azadeh-Fard, 2024. "Applications of data envelopment analysis in acute care hospitals: a systematic literature review, 1984–2022," Health Care Management Science, Springer, vol. 27(2), pages 284-312, June.
    7. Galán, Jorge E. & Pollitt, Michael G., 2014. "Inefficiency persistence and heterogeneity in Colombian electricity utilities," Energy Economics, Elsevier, vol. 46(C), pages 31-44.
    8. Zhichao Wang & Bao Hoang Nguyen & Valentin Zelenyuk, 2024. "Performance analysis of hospitals in Australia and its peers: a systematic and critical review," Journal of Productivity Analysis, Springer, vol. 62(2), pages 139-173, October.
    9. Jean Joseph Minviel & Timo Sipiläinen, 2021. "A dynamic stochastic frontier approach with persistent and transient inefficiency and unobserved heterogeneity," Agricultural Economics, International Association of Agricultural Economists, vol. 52(4), pages 575-589, July.
    10. Juan Piedra-Peña & Diego Prior, 2023. "Analyzing the effect of health reforms on the efficiency of Ecuadorian public hospitals," International Journal of Health Economics and Management, Springer, vol. 23(3), pages 361-392, September.
    11. Andrews Antony & Emvalomatis Grigorios, 2024. "Efficiency Measurement in Healthcare: The Foundations, Variables, and Models – A Narrative Literature Review," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-24.
    12. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    13. repec:cte:wsrepe:ws131918 is not listed on IDEAS
    14. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    15. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    16. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    17. Kostas Kounetas & Fotis Papathanassopoulos, 2013. "How efficient are Greek hospitals? A case study using a double bootstrap DEA approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(6), pages 979-994, December.
    18. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Monash Econometrics and Business Statistics Working Papers 3/10, Monash University, Department of Econometrics and Business Statistics.
    19. Habtamu Alem, 2021. "The Role of Technical Efficiency Achieving Sustainable Development: A Dynamic Analysis of Norwegian Dairy Farms," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    20. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Cambridge Working Papers in Economics 1423, Faculty of Economics, University of Cambridge.
    21. Jean Joseph Minviel & Timo Sipiläinen, 2018. "Dynamic stochastic analysis of the farm subsidy-efficiency link: evidence from France," Journal of Productivity Analysis, Springer, vol. 50(1), pages 41-54, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:27:y:2024:i:2:d:10.1007_s10729-024-09668-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.