IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v24y2021i4d10.1007_s10729-021-09554-4.html
   My bibliography  Save this article

Leveraging electronic health record data to inform hospital resource management

Author

Listed:
  • José Carlos Ferrão

    (SIEMENS Healthineers
    Universidade de Lisboa, University of Lisbon)

  • Mónica Duarte Oliveira

    (Universidade de Lisboa, University of Lisbon)

  • Daniel Gartner

    (Cardiff University, School of Mathematics)

  • Filipe Janela

    (SIEMENS Healthineers)

  • Henrique M. G. Martins

    (Centre for Research and Creativity in Informatics (CI2), Hospital Prof. Doutor Fernando Fonseca)

Abstract

Early identification of resource needs is instrumental in promoting efficient hospital resource management. Hospital information systems, and electronic health records (EHR) in particular, collect valuable demographic and clinical patient data from the moment patients are admitted, which can help predict expected resource needs in early stages of patient episodes. To this end, this article proposes a data mining methodology to systematically obtain predictions for relevant managerial variables by leveraging structured EHR data. Specifically, these managerial variables are: i) Diagnosis categories, ii) procedure codes, iii) diagnosis-related groups (DRGs), iv) outlier episodes and v) length of stay (LOS). The proposed methodology approaches the problem in four stages: Feature set construction, feature selection, prediction model development, and model performance evaluation. We tested this approach with an EHR dataset of 5,089 inpatient episodes and compared different classification and regression models (for categorical and continuous variables, respectively), performed temporal analysis of model performance, analyzed the impact of training set homogeneity on performance and assessed the contribution of different EHR data elements for model predictive power. Overall, our results indicate that inpatient EHR data can effectively be leveraged to inform resource management on multiple perspectives. Logistic regression (combined with minimal redundancy maximum relevance feature selection) and bagged decision trees yielded best results for predicting categorical and numerical managerial variables, respectively. Furthermore, our temporal analysis indicated that, while DRG classes are more difficult to predict, several diagnosis categories, procedure codes and LOS amongst shorter-stay patients can be predicted with higher confidence in early stages of patient stay. Lastly, value of information analysis indicated that diagnoses, medication and structured assessment forms were the most valuable EHR data elements in predicting managerial variables of interest through a data mining approach.

Suggested Citation

  • José Carlos Ferrão & Mónica Duarte Oliveira & Daniel Gartner & Filipe Janela & Henrique M. G. Martins, 2021. "Leveraging electronic health record data to inform hospital resource management," Health Care Management Science, Springer, vol. 24(4), pages 716-741, December.
  • Handle: RePEc:kap:hcarem:v:24:y:2021:i:4:d:10.1007_s10729-021-09554-4
    DOI: 10.1007/s10729-021-09554-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-021-09554-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-021-09554-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Gartner, 2014. "Scheduling the Hospital-Wide Flow of Elective Patients," Lecture Notes in Economics and Mathematical Systems, in: Optimizing Hospital-wide Patient Scheduling, edition 127, chapter 0, pages 33-54, Springer.
    2. Daniel Gartner & Rainer Kolisch & Daniel B. Neill & Rema Padman, 2015. "Machine Learning Approaches for Early DRG Classification and Resource Allocation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 718-734, November.
    3. Steven Littig & Mark Isken, 2007. "Short term hospital occupancy prediction," Health Care Management Science, Springer, vol. 10(1), pages 47-66, February.
    4. Seth Kapadia, Asha & Chan, Wenyaw & Sachdeva, Ramesh & Moye, Lemuel A. & Jefferson, Larry S., 2000. "Predicting duration of stay in a pediatric intensive care unit: A Markovian approach," European Journal of Operational Research, Elsevier, vol. 124(2), pages 353-359, July.
    5. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    6. Erwin W. Hans & Mark Houdenhoven & Peter J. H. Hulshof, 2012. "A Framework for Healthcare Planning and Control," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 303-320, Springer.
    7. Daniel Gartner & Rema Padman, 2020. "Flexible hospital-wide elective patient scheduling," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(6), pages 878-892, June.
    8. Ilona W M Verburg & Nicolette F de Keizer & Evert de Jonge & Niels Peek, 2014. "Comparison of Regression Methods for Modeling Intensive Care Length of Stay," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    9. Shanshan Qiu & Ratna Chinnam & Alper Murat & Bassam Batarse & Hakimuddin Neemuchwala & Will Jordan, 2015. "A cost sensitive inpatient bed reservation approach to reduce emergency department boarding times," Health Care Management Science, Springer, vol. 18(1), pages 67-85, March.
    10. Jonas Krämer & Jonas Schreyögg & Reinhard Busse, 2019. "Classification of hospital admissions into emergency and elective care: a machine learning approach," Health Care Management Science, Springer, vol. 22(1), pages 85-105, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhong Luo & Minjuan Chai & Xuwei Pan, 2021. "Identification of Research Priorities during the COVID-19 Pandemic: Implications for Its Management," IJERPH, MDPI, vol. 18(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    2. Karsten Schwarz & Michael Römer & Taïeb Mellouli, 2019. "A data-driven hierarchical MILP approach for scheduling clinical pathways: a real-world case study from a German university hospital," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 597-636, December.
    3. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    4. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    5. M. A. Miranda & S. Salvatierra & I. Rodríguez & M. J. Álvarez & V. Rodríguez, 2020. "Characterization of the flow of patients in a hospital from complex networks," Health Care Management Science, Springer, vol. 23(1), pages 66-79, March.
    6. Fügener, Andreas & Hans, Erwin W. & Kolisch, Rainer & Kortbeek, Nikky & Vanberkel, Peter T., 2014. "Master surgery scheduling with consideration of multiple downstream units," European Journal of Operational Research, Elsevier, vol. 239(1), pages 227-236.
    7. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    8. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    9. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2016. "Dynamic job assignment: A column generation approach with an application to surgery allocation," Discussion Papers on Economics 4/2016, University of Southern Denmark, Department of Economics.
    10. Huaxin Qiu & Dujuan Wang & Yanzhang Wang & Yunqiang Yin, 2019. "MRI appointment scheduling with uncertain examination time," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 62-82, January.
    11. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    12. Samuel Davis & Nasser Fard, 2020. "Theoretical bounds and approximation of the probability mass function of future hospital bed demand," Health Care Management Science, Springer, vol. 23(1), pages 20-33, March.
    13. Fabian Schäfer & Manuel Walther & Alexander Hübner & Heinrich Kuhn, 2019. "Operational patient-bed assignment problem in large hospital settings including overflow and uncertainty management," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 1012-1041, December.
    14. Yasar A. Ozcan & Elena Tànfani & Angela Testi, 2017. "Improving the performance of surgery-based clinical pathways: a simulation-optimization approach," Health Care Management Science, Springer, vol. 20(1), pages 1-15, March.
    15. Nguyen, Hong Ngoc & O’Donnell, Christopher, 2023. "Estimating the cost efficiency of public service providers in the presence of demand uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1334-1348.
    16. Daniel Gartner & Rainer Kolisch & Daniel B. Neill & Rema Padman, 2015. "Machine Learning Approaches for Early DRG Classification and Resource Allocation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 718-734, November.
    17. Vandenberghe, Mathieu & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Bruneel, Herwig, 2019. "Surgery sequencing to minimize the expected maximum waiting time of emergent patients," European Journal of Operational Research, Elsevier, vol. 275(3), pages 971-982.
    18. Burdett, Robert L. & Kozan, Erhan, 2018. "An integrated approach for scheduling health care activities in a hospital," European Journal of Operational Research, Elsevier, vol. 264(2), pages 756-773.
    19. Ines Verena Arnolds & Daniel Gartner, 2018. "Improving hospital layout planning through clinical pathway mining," Annals of Operations Research, Springer, vol. 263(1), pages 453-477, April.
    20. Annika Maren Schneider & Eva-Maria Oppel & Jonas Schreyögg, 2020. "Investigating the link between medical urgency and hospital efficiency – Insights from the German hospital market," Health Care Management Science, Springer, vol. 23(4), pages 649-660, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:24:y:2021:i:4:d:10.1007_s10729-021-09554-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.