IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v22y2019i4d10.1007_s10729-018-9446-6.html
   My bibliography  Save this article

Modelling mortality and discharge of hospitalized stroke patients using a phase-type recovery model

Author

Listed:
  • Bruce Jones

    (Western University)

  • Sally McClean

    (Ulster University)

  • David Stanford

    (Western University)

Abstract

We model the length of in-patient hospital stays due to stroke and the mode of discharge using a phase-type stroke recovery model. The model allows for three different types of stroke: haemorrhagic (the most severe, caused by ruptured blood vessels that cause brain bleeding), cerebral infarction (less severe, caused by blood clots) and transient ischemic attack or TIA (the least severe, a mini-stroke caused by a temporary blood clot). A four-phase recovery process is used, where the initial phase depends on the type of stroke, and transition from one phase to the next depends on the age of the patient. There are three differing modes of absorption for this phase-type model: from a typical recovery phase, a patient may die (mode 1), be transferred to a nursing home (mode 2) or be discharged to the individual’s usual residence (mode 3). The first recovery phase is characterized by a very high rate of mortality and very low rates of discharge by the other two modes. The next two recovery phases have progressively lower mortality rates and higher mode 2 and 3 discharge rates. The fourth recovery phase is visited only by those who experience a very mild TIA, and they are discharged to home after a short stay. The novelty of our approach to phase representation is two-fold: first, it aligns the phases with labelled diagnosis states, representing stages of illness severity; second, the model allows us to obtain expressions for Key Performance Indicators that are of use to healthcare professionals. This allows us to use a backward estimation process where we leverage the fact that we know the phase of admission (the diagnosis), but not which phases are subsequently entered or when this happens; this strategy improves both computational efficiency and accuracy. The model has clear practical value as it yields length of stay distributions by age and type of stroke, which are useful in resource planning. Also, inclusion of the three modes of discharge permits analyses of outcomes.

Suggested Citation

  • Bruce Jones & Sally McClean & David Stanford, 2019. "Modelling mortality and discharge of hospitalized stroke patients using a phase-type recovery model," Health Care Management Science, Springer, vol. 22(4), pages 570-588, December.
  • Handle: RePEc:kap:hcarem:v:22:y:2019:i:4:d:10.1007_s10729-018-9446-6
    DOI: 10.1007/s10729-018-9446-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-018-9446-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-018-9446-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McClean, Sally & Gillespie, Jennifer & Garg, Lalit & Barton, Maria & Scotney, Bryan & Kullerton, Ken, 2014. "Using phase-type models to cost stroke patient care across health, social and community services," European Journal of Operational Research, Elsevier, vol. 236(1), pages 190-199.
    2. Mark Fackrell, 2009. "Modelling healthcare systems with phase-type distributions," Health Care Management Science, Springer, vol. 12(1), pages 11-26, March.
    3. H. Xie & T. J. Chaussalet & P. H. Millard, 2005. "A continuous time Markov model for the length of stay of elderly people in institutional long‐term care," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 51-61, January.
    4. Harper, P.R. & Knight, V.A. & Marshall, A.H., 2012. "Discrete Conditional Phase-type models utilising classification trees: Application to modelling health service capacities," European Journal of Operational Research, Elsevier, vol. 219(3), pages 522-530.
    5. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    6. Jennifer Gillespie & Sally McClean & Bryan Scotney & Lalit Garg & Maria Barton & Ken Fullerton, 2011. "Costing hospital resources for stroke patients using phase-type models," Health Care Management Science, Springer, vol. 14(3), pages 279-291, September.
    7. C Vasilakis & A H Marshall, 2005. "Modelling nationwide hospital length of stay: opening the black box," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 862-869, July.
    8. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo D’Amico & Shakti Singh & Dharmaraja Selvamuthu, 2023. "Analysis of fair fee in guaranteed lifelong withdrawal and Markovian health benefits," Annals of Finance, Springer, vol. 19(3), pages 383-400, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanwen Meng & Kiok Teow & Chee Ooi & Bee Heng & Seow Tay, 2015. "Analysis of patient waiting time governed by a generic maximum waiting time policy with general phase-type approximations," Health Care Management Science, Springer, vol. 18(3), pages 267-278, September.
    2. McClean, Sally & Gillespie, Jennifer & Garg, Lalit & Barton, Maria & Scotney, Bryan & Kullerton, Ken, 2014. "Using phase-type models to cost stroke patient care across health, social and community services," European Journal of Operational Research, Elsevier, vol. 236(1), pages 190-199.
    3. Azcarate, Cristina & Esparza, Laida & Mallor, Fermin, 2020. "The problem of the last bed: Contextualization and a new simulation framework for analyzing physician decisions," Omega, Elsevier, vol. 96(C).
    4. Jennifer Gillespie & Sally McClean & Bryan Scotney & Lalit Garg & Maria Barton & Ken Fullerton, 2011. "Costing hospital resources for stroke patients using phase-type models," Health Care Management Science, Springer, vol. 14(3), pages 279-291, September.
    5. John Bowers, 2013. "Balancing operating theatre and bed capacity in a cardiothoracic centre," Health Care Management Science, Springer, vol. 16(3), pages 236-244, September.
    6. Casucci, Sabrina & Lin, Li & Nikolaev, Alexander, 2018. "Modeling the impact of care transition programs on patient outcomes and 30 day hospital readmissions," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 70-79.
    7. Mark Fackrell, 2009. "Modelling healthcare systems with phase-type distributions," Health Care Management Science, Springer, vol. 12(1), pages 11-26, March.
    8. P.-C.G. Vassiliou, 2021. "Non-Homogeneous Markov Set Systems," Mathematics, MDPI, vol. 9(5), pages 1-25, February.
    9. Wanlu Gu & Neng Fan & Haitao Liao, 2019. "Evaluating readmission rates and discharge planning by analyzing the length-of-stay of patients," Annals of Operations Research, Springer, vol. 276(1), pages 89-108, May.
    10. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G., 2016. "Predictive analytics model for healthcare planning and scheduling," European Journal of Operational Research, Elsevier, vol. 253(1), pages 121-131.
    11. Jennifer Gillespie & Sally McClean & Lalit Garg & Maria Barton & Bryan Scotney & Ken Fullerton, 2016. "A multi-phase DES modelling framework for patient-centred care," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1239-1249, October.
    12. C Pelletier & T J Chaussalet & H Xie, 2005. "A framework for predicting gross institutional long-term care cost arising from known commitments at local authority level," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 144-152, February.
    13. P.-C. G. Vassiliou, 2020. "Laws of Large Numbers for Non-Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1631-1658, December.
    14. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    15. Zhang, Xuan & Hou, Zhenting, 2012. "The first-passage times of phase semi-Markov processes," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 40-48.
    16. Asaduzzaman, Md & Chaussalet, Thierry J., 2014. "Capacity planning of a perinatal network with generalised loss network model with overflow," European Journal of Operational Research, Elsevier, vol. 232(1), pages 178-185.
    17. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    18. Andrew S. Gordon & Adele H. Marshall & Mariangela Zenga, 2018. "Predicting elderly patient length of stay in hospital and community care using a series of conditional Coxian phase-type distributions, further conditioned on a survival tree," Health Care Management Science, Springer, vol. 21(2), pages 269-280, June.
    19. Manuel L. Esquível & Gracinda R. Guerreiro & Matilde C. Oliveira & Pedro Corte Real, 2021. "Calibration of Transition Intensities for a Multistate Model: Application to Long-Term Care," Risks, MDPI, vol. 9(2), pages 1-17, February.
    20. Debora Sarno & Maria Elena Nenni, 2016. "Daily nurse requirements planning based on simulation of patient flows," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 526-549, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:22:y:2019:i:4:d:10.1007_s10729-018-9446-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.