IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v63y2018icp70-79.html
   My bibliography  Save this article

Modeling the impact of care transition programs on patient outcomes and 30 day hospital readmissions

Author

Listed:
  • Casucci, Sabrina
  • Lin, Li
  • Nikolaev, Alexander

Abstract

The increasing adoption of care transition programs – interventions designed to reduce hospital readmissions – has introduced a new challenge of evaluating such programs, i.e., assessing their impact on patient outcomes and care quality. This is difficult given the limited availability of program outcome data and analytical feedback exchange between providers. Moreover, the temporal nature of the effects of scheduled interventions on patient health raises the question of selecting and applying methodological tools appropriate for scientific research in this area. Our aim is to provide such methodological guidance and assist analysts, healthcare providers, and policy makers with extracting meaningful insights regarding the impact of care transition programs based on available data. We explore two well-known modeling approaches, Cox models and Markov chains, and using an illustrative example, demonstrate how they can be translated into informative analytic models with sufficient flexibility to analyze programs with diverse structures. We show that Cox Proportional Hazard models are particularly useful for identifying variables with the greatest impact on readmissions and quantifying the benefits of patient participation in a readmission reducing program. Extended Cox models provide an understanding of the effects of influential variables on readmissions as they change throughout the recovery period, allowing assessment of the relative benefits of care transition programs on different patient populations at specific times following a hospital discharge. Discrete Time Markov Chain models are particularly useful for assessing the impact of care transition programs in terms of expected time to readmission, facilitating the comparison of alternative program designs on patient outcomes.

Suggested Citation

  • Casucci, Sabrina & Lin, Li & Nikolaev, Alexander, 2018. "Modeling the impact of care transition programs on patient outcomes and 30 day hospital readmissions," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 70-79.
  • Handle: RePEc:eee:soceps:v:63:y:2018:i:c:p:70-79
    DOI: 10.1016/j.seps.2017.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012116302178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2017.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    2. B Shaw & A H Marshall, 2007. "Modelling the flow of congestive heart failure patients through a hospital system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 212-218, February.
    3. H. Xie & T. J. Chaussalet & P. H. Millard, 2005. "A continuous time Markov model for the length of stay of elderly people in institutional long‐term care," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 51-61, January.
    4. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Stefanini, Alessandro & Aloini, Davide & Benevento, Elisabetta & Dulmin, Riccardo & Mininno, Valeria, 2020. "A data-driven methodology for supporting resource planning of health services," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruce Jones & Sally McClean & David Stanford, 2019. "Modelling mortality and discharge of hospitalized stroke patients using a phase-type recovery model," Health Care Management Science, Springer, vol. 22(4), pages 570-588, December.
    2. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    3. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    4. C Pelletier & T J Chaussalet & H Xie, 2005. "A framework for predicting gross institutional long-term care cost arising from known commitments at local authority level," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 144-152, February.
    5. P.-C. G. Vassiliou, 2020. "Laws of Large Numbers for Non-Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1631-1658, December.
    6. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    7. Jennifer Gillespie & Sally McClean & Bryan Scotney & Lalit Garg & Maria Barton & Ken Fullerton, 2011. "Costing hospital resources for stroke patients using phase-type models," Health Care Management Science, Springer, vol. 14(3), pages 279-291, September.
    8. Paul Yip & Mehdi Soleymani & Kam Pui Wat & Edward Pinkney & Kwok Fai Lam, 2020. "Modeling Internal Movement of Children Born in Hong Kong to Nonlocal Mothers," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    9. Linda Möstel & Marius Pfeuffer & Matthias Fischer, 2020. "Statistical inference for Markov chains with applications to credit risk," Computational Statistics, Springer, vol. 35(4), pages 1659-1684, December.
    10. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    11. Barsotti, Flavia & De Castro, Yohann & Espinasse, Thibault & Rochet, Paul, 2014. "Estimating the transition matrix of a Markov chain observed at random times," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 98-105.
    12. Andrew S. Gordon & Adele H. Marshall & Mariangela Zenga, 2018. "Predicting elderly patient length of stay in hospital and community care using a series of conditional Coxian phase-type distributions, further conditioned on a survival tree," Health Care Management Science, Springer, vol. 21(2), pages 269-280, June.
    13. Beate Jahn & Christina Kurzthaler & Jagpreet Chhatwal & Elamin H. Elbasha & Annette Conrads-Frank & Ursula Rochau & Gaby Sroczynski & Christoph Urach & Marvin Bundo & Niki Popper & Uwe Siebert, 2019. "Alternative Conversion Methods for Transition Probabilities in State-Transition Models: Validity and Impact on Comparative Effectiveness and Cost-Effectiveness," Medical Decision Making, , vol. 39(5), pages 509-522, July.
    14. Manuel L. Esquível & Gracinda R. Guerreiro & Matilde C. Oliveira & Pedro Corte Real, 2021. "Calibration of Transition Intensities for a Multistate Model: Application to Long-Term Care," Risks, MDPI, vol. 9(2), pages 1-17, February.
    15. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    16. H Xie & T J Chaussalet & W A Thompson & P H Millard, 2007. "A simple graphical decision aid for the placement of elderly people in long-term care," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 446-453, April.
    17. Adam Steventon & Adam Roberts, 2015. "Estimating Lifetime Costs of Social Care: A Bayesian Approach Using Linked Administrative Datasets from Three Geographical Areas," Health Economics, John Wiley & Sons, Ltd., vol. 24(12), pages 1573-1587, December.
    18. K Cooper & S C Brailsford & R Davies, 2007. "Choice of modelling technique for evaluating health care interventions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 168-176, February.
    19. Bryn Lampe & Catherine de Fontenay & Jessica Nugent & Patrick Jomini, 2022. "Climbing the Jobs Ladder Slower: Young People in a Weak Labour Market," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 55(1), pages 40-70, March.
    20. Irina Marilena Ban, 2017. "Measuring trade specialization dynamics: the case of Romania and Bulgaria," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(2), pages 229-248, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:63:y:2018:i:c:p:70-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.