IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v20y2017i2d10.1007_s10729-015-9347-x.html
   My bibliography  Save this article

A stochastic model of acute-care decisions based on patient and provider heterogeneity

Author

Listed:
  • Muge Capan

    (John H. Ammon Medical Education Center)

  • Julie S. Ivy

    (North Carolina State University)

  • James R. Wilson

    (North Carolina State University)

  • Jeanne M. Huddleston

    (Mayo Clinic)

Abstract

The primary cause of preventable death in many hospitals is the failure to recognize and/or rescue patients from acute physiologic deterioration (APD). APD affects all hospitalized patients, potentially causing cardiac arrest and death. Identifying APD is difficult, and response timing is critical - delays in response represent a significant and modifiable patient safety issue. Hospitals have instituted rapid response systems or teams (RRT) to provide timely critical care for APD, with thresholds that trigger the involvement of critical care expertise. The National Early Warning Score (NEWS) was developed to define these thresholds. However, current triggers are inconsistent and ignore patient-specific factors. Further, acute care is delivered by providers with different clinical experience, resulting in quality-of-care variation. This article documents a semi-Markov decision process model of APD that incorporates patient and provider heterogeneity. The model allows for stochastically changing health states, while determining patient subpopulation-specific RRT-activation thresholds. The objective function minimizes the total time associated with patient deterioration and stabilization; and the relative values of nursing and RRT times can be modified. A case study from January 2011 to December 2012 identified six subpopulations. RRT activation was optimal for patients in “slightly concerning” health states (NEWS > 0) for all subpopulations, except surgical patients with low risk of deterioration for whom RRT was activated in “concerning” states (NEWS > 4). Clustering methods identified provider clusters considering RRT-activation preferences and estimation of stabilization-related resource needs. Providers with conservative resource estimates preferred waiting over activating RRT. This study provides simple practical rules for personalized acute care delivery.

Suggested Citation

  • Muge Capan & Julie S. Ivy & James R. Wilson & Jeanne M. Huddleston, 2017. "A stochastic model of acute-care decisions based on patient and provider heterogeneity," Health Care Management Science, Springer, vol. 20(2), pages 187-206, June.
  • Handle: RePEc:kap:hcarem:v:20:y:2017:i:2:d:10.1007_s10729-015-9347-x
    DOI: 10.1007/s10729-015-9347-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-015-9347-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-015-9347-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    2. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    3. Elliott N. Weiss & Morris A. Cohen & John C. Hershey, 1982. "An Iterative Estimation and Validation Procedure for Specification of Semi-Markov Models with Application to Hospital Patient Flow," Operations Research, INFORMS, vol. 30(6), pages 1082-1104, December.
    4. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    5. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    6. Chelsea C. White, 1976. "Procedures for the Solution of a Finite-Horizon, Partially Observed, Semi-Markov Optimization Problem," Operations Research, INFORMS, vol. 24(2), pages 348-358, April.
    7. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    8. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    9. Huan Xu & Shie Mannor, 2012. "Distributionally Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 288-300, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik Rosenstrom & Sareh Meshkinfam & Julie Simmons Ivy & Shadi Hassani Goodarzi & Muge Capan & Jeanne Huddleston & Santiago Romero-Brufau, 2022. "Optimizing the First Response to Sepsis: An Electronic Health Record-Based Markov Decision Process Model," Decision Analysis, INFORMS, vol. 19(4), pages 265-296, December.
    2. Saligrama Agnihothri & Leon Cui & Mohammad Delasay & Balaraman Rajan, 2020. "The value of mHealth for managing chronic conditions," Health Care Management Science, Springer, vol. 23(2), pages 185-202, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    2. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    3. Shie Mannor & Ofir Mebel & Huan Xu, 2016. "Robust MDPs with k -Rectangular Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1484-1509, November.
    4. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    5. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    6. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    7. Shiau Hong Lim & Huan Xu & Shie Mannor, 2016. "Reinforcement Learning in Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1325-1353, November.
    8. Zeynep Turgay & Fikri Karaesmen & Egemen Lerzan Örmeci, 2018. "Structural properties of a class of robust inventory and queueing control problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 699-716, December.
    9. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    10. Bren, Austin & Saghafian, Soroush, 2018. "Data-Driven Percentile Optimization for Multi-Class Queueing Systems with Model Ambiguity: Theory and Application," Working Paper Series rwp18-008, Harvard University, John F. Kennedy School of Government.
    11. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    12. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    13. Nicole Bauerle & Alexander Glauner, 2020. "Distributionally Robust Markov Decision Processes and their Connection to Risk Measures," Papers 2007.13103, arXiv.org.
    14. Maximilian Blesch & Philipp Eisenhauer, 2023. "Robust Decision-Making under Risk and Ambiguity," Rationality and Competition Discussion Paper Series 463, CRC TRR 190 Rationality and Competition.
    15. Eli Gutin & Daniel Kuhn & Wolfram Wiesemann, 2015. "Interdiction Games on Markovian PERT Networks," Management Science, INFORMS, vol. 61(5), pages 999-1017, May.
    16. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    17. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    18. V Varagapriya & Vikas Vikram Singh & Abdel Lisser, 2023. "Joint chance-constrained Markov decision processes," Annals of Operations Research, Springer, vol. 322(2), pages 1013-1035, March.
    19. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    20. Peter Buchholz & Dimitri Scheftelowitsch, 2019. "Computation of weighted sums of rewards for concurrent MDPs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 1-42, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:20:y:2017:i:2:d:10.1007_s10729-015-9347-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.