IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v32y2018i4d10.1007_s11408-018-0320-9.html
   My bibliography  Save this article

A differential evolution copula-based approach for a multi-period cryptocurrency portfolio optimization

Author

Listed:
  • Jules Clement Mba

    (University of Johannesburg)

  • Edson Pindza

    (University of Pretoria
    Achieversklub School of Cryptocurrency and Entrepreneurship)

  • Ur Koumba

    (University of Johannesburg)

Abstract

Recent years have seen a growing interest among investors in the new technology of blockchain and cryptocurrencies and some early investors in this new type of digital assets have made significant gains. The heuristic algorithm, differential evolution, has been advocated as a powerful tool in portfolio optimization. We propose in this study two new approaches derived from the traditional differential evolution (DE) method: the GARCH-differential evolution (GARCH-DE) and the GARCH-differential evolution t-copula (GARCH-DE-t-copula). We then contrast these two models with DE (benchmark) in single and multi-period optimizations on a portfolio consisting of five cryptoassets under the coherent risk measure CVaR constraint. Our analysis shows that the GARCH-DE-t-copula outperforms the DE and GARCH-DE approaches in both single- and multi-period frameworks. For these notoriously volatile assets, the GARCH-DE-t-copula has shown risk-control ability, hereby confirming the ability of t-copula to capture the dependence structure in the fat tail.

Suggested Citation

  • Jules Clement Mba & Edson Pindza & Ur Koumba, 2018. "A differential evolution copula-based approach for a multi-period cryptocurrency portfolio optimization," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(4), pages 399-418, November.
  • Handle: RePEc:kap:fmktpm:v:32:y:2018:i:4:d:10.1007_s11408-018-0320-9
    DOI: 10.1007/s11408-018-0320-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11408-018-0320-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11408-018-0320-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    2. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    3. Moshirian, Fariborz, 2011. "The global financial crisis and the evolution of markets, institutions and regulation," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 502-511, March.
    4. Bjorn Hagstromer & Jane Binner, 2009. "Stock portfolio selection with full-scale optimization and differential evolution," Applied Financial Economics, Taylor & Francis Journals, vol. 19(19), pages 1559-1571.
    5. Maringer Dietmar G. & Meyer Mark, 2008. "Smooth Transition Autoregressive Models -- New Approaches to the Model Selection Problem," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    6. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    7. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    8. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    9. Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
    10. Florackis, Chris & Kontonikas, Alexandros & Kostakis, Alexandros, 2014. "Stock market liquidity and macro-liquidity shocks: Evidence from the 2007–2009 financial crisis," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 97-117.
    11. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    12. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    13. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    14. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    15. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    16. Bekiros, Stelios & Hernandez, Jose Arreola & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2015. "Multivariate dependence risk and portfolio optimization: An application to mining stock portfolios," Resources Policy, Elsevier, vol. 46(P2), pages 1-11.
    17. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    18. Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
    19. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    20. Hakansson, Nils H, 1971. "Multi-Period Mean-Variance Analysis: Toward A General Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 26(4), pages 857-884, September.
    21. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
    22. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    23. Low, Rand Kwong Yew & Alcock, Jamie & Faff, Robert & Brailsford, Timothy, 2013. "Canonical vine copulas in the context of modern portfolio management: Are they worth it?," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3085-3099.
    24. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osman, Myriam Ben & Galariotis, Emilios & Guesmi, Khaled & Hamdi, Haykel & Naoui, Kamel, 2023. "Diversification in financial and crypto markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
    2. Liu, Jian & Julaiti, Jiansuer & Gou, Shangde, 2024. "Decomposing interconnectedness: A study of cryptocurrency spillover effects in global financial markets," Finance Research Letters, Elsevier, vol. 61(C).
    3. Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
    4. Jules Clement Mba & Sutene Mwambi, 2020. "A Markov-switching COGARCH approach to cryptocurrency portfolio selection and optimization," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 199-214, June.
    5. Cheng, Jiyang & Tiwari, Sunil & Khaled, Djebbouri & Mahendru, Mandeep & Shahzad, Umer, 2024. "Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    6. Mario I. Contreras-Valdez & José Antonio Núñez & Guillermo Benavides Perales, 2022. "Bitcoin in Portfolio Selection: A Multivariate Distribution Approach," SAGE Open, , vol. 12(2), pages 21582440221, May.
    7. Jules Clément Mba & Magdaline Mbong Mai, 2022. "A Particle Swarm Optimization Copula-Based Approach with Application to Cryptocurrency Portfolio Optimisation," JRFM, MDPI, vol. 15(7), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jules Clement Mba & Sutene Mwambi, 2020. "A Markov-switching COGARCH approach to cryptocurrency portfolio selection and optimization," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 199-214, June.
    2. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
    3. Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.
    4. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    5. Lahmiri, Salim & Bekiros, Stelios, 2019. "Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 334-341.
    6. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    7. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    8. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    9. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    10. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    11. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    12. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    13. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    14. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    15. Fakhfekh, Mohamed & Jeribi, Ahmed, 2020. "Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models," Research in International Business and Finance, Elsevier, vol. 51(C).
    16. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    17. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    18. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    19. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    20. Sercan Demiralay & Selçuk Bayracı, 2021. "Should stock investors include cryptocurrencies in their portfolios after all? Evidence from a conditional diversification benefits measure," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6188-6204, October.

    More about this item

    Keywords

    Cryptocurrencies; GARCH; Differential evolution; t-copula; CVaR; Portfolio optimization;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:32:y:2018:i:4:d:10.1007_s11408-018-0320-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.