IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v32y2018i2d10.1007_s11408-018-0308-5.html
   My bibliography  Save this article

The dynamic dependence between stock markets in the greater China economic area: a study based on extreme values and copulas

Author

Listed:
  • Saiful Izzuan Hussain

    (Universiti Kebangsaan Malaysia)

  • Steven Li

    (RMIT University)

Abstract

This study employs the dynamic copula method and extreme value theory to investigate the dependence structure between pairs of greater China economic area (GCEA) stock markets consisting of Shanghai (SHSE), Shenzhen (SZSE), Hong Kong (HKSE), and Taiwan (TWSE) stock exchanges from July 2000 to June 2017. We also examine the impact of financial crisis on the dependence structure by considering the global financial crisis and the Chinese stock market crash (2015–2016). Many studies have shown that the benefits of portfolio diversification across the stock markets in the same region could be diminishing. However, it is interesting to see that the diversification benefits appear to be viable for investing in some GCEA pairs of stock markets (SHSE–TWSE and SZSE–HKSE).

Suggested Citation

  • Saiful Izzuan Hussain & Steven Li, 2018. "The dynamic dependence between stock markets in the greater China economic area: a study based on extreme values and copulas," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(2), pages 207-233, May.
  • Handle: RePEc:kap:fmktpm:v:32:y:2018:i:2:d:10.1007_s11408-018-0308-5
    DOI: 10.1007/s11408-018-0308-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11408-018-0308-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11408-018-0308-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussain, Saiful Izzuan & Li, Steven, 2015. "Modeling the distribution of extreme returns in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 263-276.
    2. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    3. Cheung, Yin-Wong & Chinn, Menzie David & Fujii, Eiji, 2003. "China, Hong Kong, and Taiwan: A Quantitative Assessment of Real and Financial Integration," Santa Cruz Department of Economics, Working Paper Series qt13d9m8jv, Department of Economics, UC Santa Cruz.
    4. Groenwold, Nicolaas & Tang, Sam Hak Kan & Wu, Yanrui, 2004. "The dynamic interrelationships between the greater China share markets," China Economic Review, Elsevier, vol. 15(1), pages 45-62, January.
    5. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
    6. T. Ane & C. Labidi, 2006. "Spillover effects and conditional dependence," Post-Print hal-00170818, HAL.
    7. Kin‐Yip Ho & Zhaoyong Zhang, 2012. "Dynamic Linkages among Financial Markets in the Greater China Region: A Multivariate Asymmetric Approach," The World Economy, Wiley Blackwell, vol. 35(4), pages 500-523, April.
    8. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    9. Yin-Wong Cheung & Menzie D. Chinn & Eiji Fujii, 2005. "Dimensions of financial integration in Greater China: money markets, banks and policy effects," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(2), pages 117-132.
    10. Hwahsin Cheng & John Glascock, 2005. "Dynamic Linkages Between the Greater China Economic Area Stock Markets—Mainland China, Hong Kong, and Taiwan," Review of Quantitative Finance and Accounting, Springer, vol. 24(4), pages 343-357, June.
    11. Ane, Thierry & Labidi, Chiraz, 2006. "Spillover effects and conditional dependence," International Review of Economics & Finance, Elsevier, vol. 15(4), pages 417-442.
    12. Cheung, Yin-Wong & Chinn, Menzie D. & Fujii, Eiji, 2003. "China, Hong Kong, and Taiwan: A quantitative assessment of real and financial integration," China Economic Review, Elsevier, vol. 14(3), pages 281-303.
    13. Nguyen, Cuong & Ishaq Bhatti, M. & Henry, Darren, 2017. "Are Vietnam and Chinese stock markets out of the US contagion effect in extreme events?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 480(C), pages 10-21.
    14. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    15. Al Rahahleh, Naseem & Bhatti, M. Ishaq & Adeinat, Iman, 2017. "Tail dependence and information flow: Evidence from international equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 319-329.
    16. Hyde, Stuart J & Bredin, Don P & Nguyen, Nghia, 2007. "Correlation dynamics between Asia-Pacific, EU and US stock returns," MPRA Paper 9681, University Library of Munich, Germany.
    17. Bhatti, M. Ishaq & Nguyen, Cuong C., 2012. "Diversification evidence from international equity markets using extreme values and stochastic copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(3), pages 622-646.
    18. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    19. Kuan-Min Wang, 2013. "Did Vietnam stock market avoid the “contagion risk” from China and the U.S.? The contagion effect test with dynamic correlation coefficients," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2143-2161, June.
    20. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    21. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    22. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    23. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    24. Jian Hu, 2010. "Dependence structures in Chinese and US financial markets: a time-varying conditional copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 20(7), pages 561-583.
    25. Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
    26. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    27. Xiaoqing Eleanor Xu & Hung–Gay Fung, 2002. "Information Flows across Markets: Evidence from China–Backed Stocks Dual–Listed in Hong Kong and New York," The Financial Review, Eastern Finance Association, vol. 37(4), pages 563-588, November.
    28. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    29. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    30. Kuan-Min Wang & Thanh-Binh Nguyen Thi, 2013. "Did China avoid the ‘Asian flu’? The contagion effect test with dynamic correlation coefficients," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 471-481, February.
    31. Al Rahahleh, Naseem & Bhatti, M. Ishaq, 2017. "Co-movement measure of information transmission on international equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 119-131.
    32. Bartram, Sohnke M. & Taylor, Stephen J. & Wang, Yaw-Huei, 2007. "The Euro and European financial market dependence," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1461-1481, May.
    33. Johansson, Anders C. & Ljungwall, Christer, 2009. "Spillover Effects Among the Greater China Stock Markets," World Development, Elsevier, vol. 37(4), pages 839-851, April.
    34. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    35. Hong Li, 2007. "International linkages of the Chinese stock exchanges: a multivariate GARCH analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 17(4), pages 285-297.
    36. He, Hongbo & Chen, Shou & Yao, Shujie & Ou, Jinghua, 2015. "Stock market interdependence between China and the world: A multi-factor R-squared approach," Finance Research Letters, Elsevier, vol. 13(C), pages 125-129.
    37. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    38. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    39. Wang, Kehluh & Chen, Yi-Hsuan & Huang, Szu-Wei, 2011. "The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 654-664, October.
    40. Wang, Yuenan & Iorio, Amalia Di, 2007. "Are the China-related stock markets segmented with both world and regional stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(3), pages 277-290, July.
    41. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Saiful Izzuan & Nur-Firyal, R. & Ruza, Nadiah, 2022. "Linkage transitions between oil and the stock markets of countries with the highest COVID-19 cases," Journal of Commodity Markets, Elsevier, vol. 28(C).
    2. Saiful Izzuan Hussain & Steven Li, 2022. "Dependence structure between oil and other commodity futures in China based on extreme value theory and copulas," The World Economy, Wiley Blackwell, vol. 45(1), pages 317-335, January.
    3. Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    2. Wang, Kehluh & Chen, Yi-Hsuan & Huang, Szu-Wei, 2011. "The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 654-664, October.
    3. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
    4. Nguyen, Cuong & Ishaq Bhatti, M. & Henry, Darren, 2017. "Are Vietnam and Chinese stock markets out of the US contagion effect in extreme events?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 480(C), pages 10-21.
    5. Heni Boubaker & Nadia Sghaier, 2015. "On the Dynamic Dependence between US and other Developed Stock Markets: An Extreme-value Time-varying Copula Approach," Bankers, Markets & Investors, ESKA Publishing, issue 136-137, pages 80-93, May-June.
    6. Duy Duong & Toan Luu Duc Huynh, 2020. "Tail dependence in emerging ASEAN-6 equity markets: empirical evidence from quantitative approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-26, December.
    7. repec:ipg:wpaper:2014-094 is not listed on IDEAS
    8. Heni Boubaker & Nadia Sghaier, 2014. "On the dynamic dependence between US and other developed stock markets: An extreme-value time-varying copula approach," Working Papers 2014-281, Department of Research, Ipag Business School.
    9. Sunil S. Poshakwale & Anandadeep Mandal, 2017. "Sources of time varying return comovements during different economic regimes: evidence from the emerging Indian equity market," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 859-892, May.
    10. Rakesh Gupta & Junhao Yang & Thadavillil Jithendranathan, 2017. "Diversification into Emerging Markets – An Australian and the US Perspective Using a Time-varying Approach," Australian Economic Papers, Wiley Blackwell, vol. 56(2), pages 134-162, June.
    11. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    12. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    13. Anders Johansson, 2010. "China's financial market integration with the world," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 8(3), pages 293-314.
    14. Hussain, Saiful Izzuan & Nur-Firyal, R. & Ruza, Nadiah, 2022. "Linkage transitions between oil and the stock markets of countries with the highest COVID-19 cases," Journal of Commodity Markets, Elsevier, vol. 28(C).
    15. Shegorika Rajwani & Dilip Kumar, 2019. "Measuring Dependence Between the USA and the Asian Economies: A Time-varying Copula Approach," Global Business Review, International Management Institute, vol. 20(4), pages 962-980, August.
    16. Heni Boubaker & Nadia Sghaier, 2014. "On the dynamic dependence between US and other developed stock markets: An extreme," Working Papers 2014-94, Department of Research, Ipag Business School.
    17. Yiguo Sun & Ximing Wu, 2018. "Leverage and Volatility Feedback Effects and Conditional Dependence Index: A Nonparametric Study," JRFM, MDPI, vol. 11(2), pages 1-20, June.
    18. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    19. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    20. Zhu, Hui-Ming & Li, Rong & Li, Sufang, 2014. "Modelling dynamic dependence between crude oil prices and Asia-Pacific stock market returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 208-223.
    21. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.

    More about this item

    Keywords

    Copula; Extreme value theory; Dependence structure; Chinese stock markets; Financial crisis;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:32:y:2018:i:2:d:10.1007_s11408-018-0308-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.