IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v37y2007i4p733-755.html
   My bibliography  Save this article

Efficient ecosystem services and naturalness in an ecological/economic model

Author

Listed:
  • Thomas Eichner
  • John Tschirhart

Abstract

In an integrated economic/ecological model, the economy benefits from ecosystem services that include: (1) the consumptive use of a harvested species, (2) the non-consumptive use of popular species, and (3) naturalness, i.e., the divergence of the ecosystem’s biodiversity from its natural steady state. The biological component of the model, which is applied to a nine-species Alaskan marine ecosystem, relies on individual optimizing behaviour by plants and animals to establish population dynamics. The biological component is used to define naturalness. By varying harvesting we arrive at different steady-state populations and humans choose from among these steady states. Welfare maximizing levels of the ecosystem services are derived, then it is shown that in the laissez-faire economy overharvesting occurs when the harvesting industry ignores ecosystem services (2) and (3). Lastly, we introduce efficiency restoring taxes and standards that internalize the ecosystem externalities. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Thomas Eichner & John Tschirhart, 2007. "Efficient ecosystem services and naturalness in an ecological/economic model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(4), pages 733-755, August.
  • Handle: RePEc:kap:enreec:v:37:y:2007:i:4:p:733-755
    DOI: 10.1007/s10640-006-9065-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-006-9065-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-006-9065-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solow Andrew & Polasky Stephen & Broadus James, 1993. "On the Measurement of Biological Diversity," Journal of Environmental Economics and Management, Elsevier, vol. 24(1), pages 60-68, January.
    2. Shogren,Jason F. & Tschirhart,John (ed.), 2001. "Protecting Endangered Species in the United States," Cambridge Books, Cambridge University Press, number 9780521662109, October.
    3. William A. Brock & Anastasios Xepapadeas, 2003. "Valuing Biodiversity from an Economic Perspective: A Unified Economic, Ecological, and Genetic Approach," American Economic Review, American Economic Association, vol. 93(5), pages 1597-1614, December.
    4. Margaret Forsyth, 2000. "On estimating the option value of preserving a wilderness area," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 33(2), pages 413-434, May.
    5. Chad Settle & Jason E Shogren, 2002. "Modeling Native-Exotic Species within Yellowstone Lake," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(5), pages 1323-1328.
    6. Martin L. Weitzman, 1998. "The Noah's Ark Problem," Econometrica, Econometric Society, vol. 66(6), pages 1279-1298, November.
    7. Martin L. Weitzman, 1992. "On Diversity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 363-405.
    8. Loomis, John B. & White, Douglas S., 1996. "Economic benefits of rare and endangered species: summary and meta-analysis," Ecological Economics, Elsevier, vol. 18(3), pages 197-206, September.
    9. Polasky Stephen & Solow Andrew R., 1995. "On the Value of a Collection of Species," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 298-303, November.
    10. Brock, William & Xepapadeas, Anastasios, 2002. "Optimal Ecosystem Management when Species Compete for Limiting Resources," Journal of Environmental Economics and Management, Elsevier, vol. 44(2), pages 189-220, September.
    11. Conrad, Jon M., 1997. "On the option value of old-growth forest," Ecological Economics, Elsevier, vol. 22(2), pages 97-102, August.
    12. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    13. Thomas Eichner & Rüdiger Pethig, 2005. "Ecosystem and Economy: An Integrated Dynamic General Equilibrium Approach," Journal of Economics, Springer, vol. 85(3), pages 213-249, September.
    14. Jin, Di & Hoagland, Porter & Morin Dalton, Tracey, 2003. "Linking economic and ecological models for a marine ecosystem," Ecological Economics, Elsevier, vol. 46(3), pages 367-385, October.
    15. David Finnoff & John Tschirhart, 2003. "Protecting an Endangered Species While Harvesting Its Prey in a General Equilibrium Ecosystem Model," Land Economics, University of Wisconsin Press, vol. 79(2), pages 160-180.
    16. Raffaello Cervigni, 2001. "Biodiversity in the Balance," Books, Edward Elgar Publishing, number 2060.
    17. Thomas Crocker & John Tschirhart, 1992. "Ecosystems, externalities, and economies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(6), pages 551-567, November.
    18. Armsworth, Paul R. & Kendall, Bruce E. & Davis, Frank W., 2004. "An introduction to biodiversity concepts for environmental economists," Resource and Energy Economics, Elsevier, vol. 26(2), pages 115-136, June.
    19. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    20. Finnoff, David & Tschirhart, John, 2003. "Harvesting in an eight-species ecosystem," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 589-611, May.
    21. Donald A. Walker (ed.), 2000. "Equilibrium," Books, Edward Elgar Publishing, volume 0, number 1585.
    22. Herman E. Daly, 1968. "On Economics as a Life Science," Journal of Political Economy, University of Chicago Press, vol. 76(3), pages 392-392.
    23. Charles Perrings, 1998. "Resilience in the Dynamics of Economy-Environment Systems," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 503-520, April.
    24. Weitzman, M.L., 1992. "Diversity Functions," Harvard Institute of Economic Research Working Papers 1610, Harvard - Institute of Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rauscher, Michael & Barbier, Edward B., 2010. "Biodiversity and geography," Resource and Energy Economics, Elsevier, vol. 32(2), pages 241-260, April.
    2. Christine Bertram & Martin F. Quaas, 2017. "Biodiversity and Optimal Multi-species Ecosystem Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 321-350, June.
    3. Taylor, Michael H. & Rollins, Kimberly, 2012. "Using Ecological Models to Coordinate Valuation of Ecological Change on Western Rangelands for ex post Application to Policy Analysis," Western Economics Forum, Western Agricultural Economics Association, vol. 11(1), pages 1-9.
    4. Apriesnig, Jenny L. & Warziniack, Travis W. & Finnoff, David C. & Zhang, Hongyan & Lee, Katherine D. & Mason, Doran M. & Rutherford, Edward S., 2022. "The consequences of misrepresenting feedbacks in coupled human and environmental models," Ecological Economics, Elsevier, vol. 195(C).
    5. Hussain, A.M. Tanvir & Tschirhart, John, 2013. "Economic/ecological tradeoffs among ecosystem services and biodiversity conservation," Ecological Economics, Elsevier, vol. 93(C), pages 116-127.
    6. Narendra N. Dalei & Yamini Gupt, 2019. "Drivers of Forest Ecosystem Change in Purnapani Area: Empirical Evidence and Policy Suggestions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 167-196, March.
    7. Birgit Bednar-Friedl & Doris Behrens & Michael Getzner, 2012. "Optimal Dynamic Control of Visitors and Endangered Species in a National Park," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(1), pages 1-22, May.
    8. Bertram, Christine, 2010. "Integrating biodiversity indices into a multi-species optimal control model," Kiel Working Papers 1662, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    2. Finnoff, David & Tschirhart, John, 2008. "Linking dynamic economic and ecological general equilibrium models," Resource and Energy Economics, Elsevier, vol. 30(2), pages 91-114, May.
    3. Swallow, Stephen K., 1996. "Economic Issues in Ecosystem Management: An Introduction and Overview," Agricultural and Resource Economics Review, Cambridge University Press, vol. 25(2), pages 83-100, October.
    4. Tilman, David & Polasky, Stephen & Lehman, Clarence, 2005. "Diversity, productivity and temporal stability in the economies of humans and nature," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 405-426, May.
    5. Béné, C. & Doyen, L., 2008. "Contribution values of biodiversity to ecosystem performances: A viability perspective," Ecological Economics, Elsevier, vol. 68(1-2), pages 14-23, December.
    6. Rauscher, Michael & Barbier, Edward B., 2010. "Biodiversity and geography," Resource and Energy Economics, Elsevier, vol. 32(2), pages 241-260, April.
    7. Martinet, Vincent & Blanchard, Fabian, 2009. "Fishery externalities and biodiversity: Trade-offs between the viability of shrimp trawling and the conservation of Frigatebirds in French Guiana," Ecological Economics, Elsevier, vol. 68(12), pages 2960-2968, October.
    8. William A. Brock & Anastasios Xepapadeas, 2003. "Valuing Biodiversity from an Economic Perspective: A Unified Economic, Ecological, and Genetic Approach," American Economic Review, American Economic Association, vol. 93(5), pages 1597-1614, December.
    9. Juutinen, Artti, 2008. "Old-growth boreal forests: Worth protecting for biodiversity?," Journal of Forest Economics, Elsevier, vol. 14(4), pages 242-267, November.
    10. Baumgartner, Stefan & Becker, Christian & Faber, Malte & Manstetten, Reiner, 2006. "Relative and absolute scarcity of nature. Assessing the roles of economics and ecology for biodiversity conservation," Ecological Economics, Elsevier, vol. 59(4), pages 487-498, October.
    11. McPherson, Michael A. & Nieswiadomy, Michael L., 2005. "Environmental Kuznets curve: threatened species and spatial effects," Ecological Economics, Elsevier, vol. 55(3), pages 395-407, November.
    12. Eichner, Thomas & Pethig, Rüdiger, 2009. "Pricing the ecosystem and taxing ecosystem services: A general equilibrium approach," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1589-1616, July.
    13. Gerber, Nicolas, 2011. "Biodiversity measures based on species-level dissimilarities: A methodology for assessment," Ecological Economics, Elsevier, vol. 70(12), pages 2275-2281.
    14. Finnoff, David & Gong, Min & Tschirhart, John, 2012. "Perspectives on Ecosystem Based Management for Delivering Ecosystem Services with an Example from an Eighteen-Species Marine Model," International Review of Environmental and Resource Economics, now publishers, vol. 6(1), pages 79-118, January.
    15. Perry, Neil & Shankar, Sriram, 2017. "The State-contingent Approach to the Noah's Ark Problem," Ecological Economics, Elsevier, vol. 134(C), pages 65-72.
    16. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    17. Nehring, Klaus & Puppe, Clemens, 2004. "Modelling phylogenetic diversity," Resource and Energy Economics, Elsevier, vol. 26(2), pages 205-235, June.
    18. Finnoff, David & Shogren, Jason F. & Leung, Brian & Lodge, David, 2005. "The importance of bioeconomic feedback in invasive species management," Ecological Economics, Elsevier, vol. 52(3), pages 367-381, February.
    19. Perry, Neil, 2010. "The ecological importance of species and the Noah's Ark problem," Ecological Economics, Elsevier, vol. 69(3), pages 478-485, January.
    20. Gerber, Nicolas, 2009. "Measuring Biodiversity – an axiomatic evaluation of measures based on genetic data," Discussion Papers 51305, University of Bonn, Center for Development Research (ZEF).

    More about this item

    Keywords

    Ecosystem services; Biodiversity; Naturalness; Harvesting; Q22; Q28; Q57; Q58;
    All these keywords.

    JEL classification:

    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:37:y:2007:i:4:p:733-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.