IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i5d10.1007_s10614-023-10538-5.html
   My bibliography  Save this article

Machine Learning-Based Approach for Predicting the Altcoins Price Direction Change from a High-Frequency Data of Seven Years Based on Socio-Economic Factors, Bitcoin Prices, Twitter and News Sentiments

Author

Listed:
  • Anamika Gupta

    (S.S. College of Business Studies, University of Delhi)

  • Gaurav Pandey

    (IIT Jodhpur
    Analyttica Datalab)

  • Rajan Gupta

    (Analyttica Datalab
    Autonomous University of Tamaulipas)

  • Smaran Das

    (S.S. College of Business Studies, University of Delhi)

  • Ajmera Prakash

    (S.S. College of Business Studies, University of Delhi)

  • Kartik Garg

    (S.S. College of Business Studies, University of Delhi)

  • Shreyan Sarkar

    (S.S. College of Business Studies, University of Delhi)

Abstract

Altcoins are alternative types of coins under cryptocurrency, apart from traditional Bitcoins, for which predicting the price movement presents a multifaceted challenge deeply rooted in the volatile nature of the cryptocurrency market. This study compares and analyzes different Machine Learning (ML) and Deep Learning (DL) models for price movement prediction through diverse data sources like Bitcoin prices, social media sentiments, and news sentiments, apart from different socio-economic factors specific to USA geography due to its maturity on use of Altcoins, with temporal scope spanning from 2016 to 2022 collating over 77 M tweets and news items. Ethereum, Binance, XRP, Cardano, Monero, Tron, Stellar, and Litecoin, were considered for experimentation across widely used algorithms like Gradient Boosting, Naive Bayes, Decision Trees, Neural Networks, and the like, with different day-length lags ranging up to 4 days. Highly relevant features were selected using Random Forest selection method and highly correlated features have been removed before the modeling. Accuracy for price movement prediction models varied from 71.03% for Ethereum to 66.14% for Stellar, which were better by 15–20% as compared to percentage benchmarking done by literature to be ranging around 50 s and 60 s. For the model validation, sensitivity analysis involving day-wise lag analysis, and different data splits (based on size and months) were considered, which was stable for the high performing models. Further, an interesting result was observed during the study. In order of priority, Bitcoin prices, social media sentiments, and news sentiments significantly impact altcoin price movement. This implies that by studying the Bitcoin price movement and market sentiments, investors can make wise decisions towards altcoin investments. This study holds significance for researchers and practitioners to understand the impact in the trading market of cryptocurrency and help an investor diversify their portfolio. The findings will be helpful for Algo Trading Platforms, Financial Advisors, Trading Experts, Industry Experts, Researchers, and Scholars.

Suggested Citation

  • Anamika Gupta & Gaurav Pandey & Rajan Gupta & Smaran Das & Ajmera Prakash & Kartik Garg & Shreyan Sarkar, 2024. "Machine Learning-Based Approach for Predicting the Altcoins Price Direction Change from a High-Frequency Data of Seven Years Based on Socio-Economic Factors, Bitcoin Prices, Twitter and News Sentiment," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2981-3026, November.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:5:d:10.1007_s10614-023-10538-5
    DOI: 10.1007/s10614-023-10538-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10538-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10538-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:5:d:10.1007_s10614-023-10538-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.