IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i5d10.1007_s10614-023-10392-5.html
   My bibliography  Save this article

On Forecasting Realized Volatility for Bitcoin Based on Deep Learning PSO–GRU Model

Author

Listed:
  • Xiaolong Tang

    (Shanghai Normal University)

  • Yuping Song

    (Shanghai Normal University)

  • Xingrui Jiao

    (Shanghai Normal University)

  • Yankun Sun

    (Shanghai Normal University)

Abstract

As the trendsetter of the digital currency market, Bitcoin fluctuates dramatically in a short period of time and has received increasing attention from investors. However, its high volatility has brought great uncertainty to the financial market. In this paper, we focus on forecasting the realized volatility of Bitcoin by using an optimized deep learning model. Firstly, we construct a more comprehensive system of factor indicators and employ different methods for feature selection, and find that the Random Forest-based feature selection fits better on the deep learning model. Then, we use the particle swarm optimization (PSO) algorithm to optimize the parameters of gated recurrent unit (GRU) model to improve the prediction accuracy, and the results show that the prediction accuracy of PSO–GRU model is 10.47%, 15.28%, 21.73%, 34.79% better than the GRU model, long-short term memory model, machine learning models and the generalized autoregressive conditional heteroscedasticity model on the mean absolute error, respectively. Finally, we establish an early risk warning scheme for Bitcoin volatility and a butterfly option arbitrage strategy, that provide investors with a reference for reasonable arrangement of trading strategies.

Suggested Citation

  • Xiaolong Tang & Yuping Song & Xingrui Jiao & Yankun Sun, 2024. "On Forecasting Realized Volatility for Bitcoin Based on Deep Learning PSO–GRU Model," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2011-2033, May.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10392-5
    DOI: 10.1007/s10614-023-10392-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10392-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10392-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    2. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    3. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    4. Ting-Hsuan Chen & Mu-Yen Chen & Guan-Ting Du, 2021. "The Determinants of Bitcoin’s Price: Utilization of GARCH and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 267-280, January.
    5. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting realized volatility of bitcoin returns: tail events and asymmetric loss," The European Journal of Finance, Taylor & Francis Journals, vol. 27(16), pages 1626-1644, November.
    6. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    7. Prosper Lamothe-Fernández & David Alaminos & Prosper Lamothe-López & Manuel A. Fernández-Gámez, 2020. "Deep Learning Methods for Modeling Bitcoin Price," Mathematics, MDPI, vol. 8(8), pages 1-13, July.
    8. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    9. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    10. Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    2. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    3. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    4. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    5. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    6. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    7. Gregor Dorfleitner & Carina Lung, 2018. "Cryptocurrencies from the perspective of euro investors: a re-examination of diversification benefits and a new day-of-the-week effect," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 472-494, December.
    8. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    9. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    10. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    11. Shrestha, Prabal & Arslan-Ayaydin, Özgür & Thewissen, James & Torsin, Wouter, 2021. "Institutions, regulations and initial coin offerings: An international perspective," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 102-120.
    12. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    13. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    14. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    15. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    16. Chappell, Daniel, 2018. "Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models," MPRA Paper 90682, University Library of Munich, Germany.
    17. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    18. Gunnarsson, Elias Søvik & Isern, Håkon Ramon & Kaloudis, Aristidis & Risstad, Morten & Vigdel, Benjamin & Westgaard, Sjur, 2024. "Prediction of realized volatility and implied volatility indices using AI and machine learning: A review," International Review of Financial Analysis, Elsevier, vol. 93(C).
    19. Lei Wang & Provash Kumer Sarker & Elie Bouri, 2023. "Short- and Long-Term Interactions Between Bitcoin and Economic Variables: Evidence from the US," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1305-1330, April.
    20. Wang, Jying-Nan & Liu, Hung-Chun & Hsu, Yuan-Teng, 2020. "Time-of-day periodicities of trading volume and volatility in Bitcoin exchange: Does the stock market matter?," Finance Research Letters, Elsevier, vol. 34(C).

    More about this item

    Keywords

    Bitcoin; Realized volatility; Particle swarm optimization; Gated recurrent unit; Butterfly option;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10392-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.