IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v61y2023i2d10.1007_s10614-021-10221-7.html
   My bibliography  Save this article

A Method to Pre-compile Numerical Integrals When Solving Stochastic Dynamic Problems

Author

Listed:
  • Karolos Arapakis

    (University College London)

Abstract

We show how the interpolation step of numerical integration can be pre-compiled in partial equilibrium stochastic dynamic problems. We display the pre-compilation’s sufficient conditions and document its speed gains using a consumption-savings model with a discrete labour choice, wage uncertainty and stochastic non-labour income.

Suggested Citation

  • Karolos Arapakis, 2023. "A Method to Pre-compile Numerical Integrals When Solving Stochastic Dynamic Problems," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 593-610, February.
  • Handle: RePEc:kap:compec:v:61:y:2023:i:2:d:10.1007_s10614-021-10221-7
    DOI: 10.1007/s10614-021-10221-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10221-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10221-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Blundell & Monica Costa Dias & Costas Meghir & Jonathan Shaw, 2016. "Female Labor Supply, Human Capital, and Welfare Reform," Econometrica, Econometric Society, vol. 84, pages 1705-1753, September.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    3. Giulio Fella, 2014. "A generalized endogenous grid method for non-smooth and non-concave problems," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(2), pages 329-344, April.
    4. Eric French & John Bailey Jones, 2011. "The Effects of Health Insurance and Self‐Insurance on Retirement Behavior," Econometrica, Econometric Society, vol. 79(3), pages 693-732, May.
    5. Druedahl, Jeppe & Jørgensen, Thomas Høgholm, 2017. "A general endogenous grid method for multi-dimensional models with non-convexities and constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 87-107.
    6. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    7. Carroll, Christopher D., 2006. "The method of endogenous gridpoints for solving dynamic stochastic optimization problems," Economics Letters, Elsevier, vol. 91(3), pages 312-320, June.
    8. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    9. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeppe Druedahl, 2021. "A Guide on Solving Non-convex Consumption-Saving Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 747-775, October.
    2. Alexander Ludwig & Matthias Schön, 2018. "Endogenous Grids in Higher Dimensions: Delaunay Interpolation and Hybrid Methods," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 463-492, March.
    3. Ayşe Kabukçuoğlu & Enrique Martínez-García, 2021. "A Generalized Time Iteration Method for Solving Dynamic Optimization Problems with Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 435-460, August.
    4. Druedahl, Jeppe & Jørgensen, Thomas Høgholm, 2017. "A general endogenous grid method for multi-dimensional models with non-convexities and constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 87-107.
    5. Guerra Vallejos, Ernesto & Bobenrieth Hochfarber, Eugenio & Bobenrieth Hochfarber, Juan & Wright, Brian D., 2021. "Solving dynamic stochastic models with multiple occasionally binding constraints," Economic Modelling, Elsevier, vol. 105(C).
    6. repec:mea:meawpa:13274 is not listed on IDEAS
    7. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    8. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    9. White, Matthew N., 2015. "The method of endogenous gridpoints in theory and practice," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 26-41.
    10. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    11. Takeshi Fukasawa, 2024. "Simple method for efficiently solving dynamic models with continuous actions using policy gradient," Papers 2407.04227, arXiv.org.
    12. Iskhakov, Fedor & Keane, Michael, 2021. "Effects of taxes and safety net pensions on life-cycle labor supply, savings and human capital: The case of Australia," Journal of Econometrics, Elsevier, vol. 223(2), pages 401-432.
    13. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Japanese Economic Association, vol. 70(1), pages 51-104, March.
    14. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "The Market Resources Method for Solving Dynamic Optimization Problems," Koç University-TUSIAD Economic Research Forum Working Papers 1607, Koc University-TUSIAD Economic Research Forum.
    15. Fedor Iskhakov & Michael Keane, 2018. "Effects of Taxes and Safety Net Pensions on life-cycle Labor Supply, Savings and Human Capital: the Case of Australia," Discussion Papers 2018-09, School of Economics, The University of New South Wales.
    16. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    17. Jeppe Druedahl & Alessandro Martinello, 2022. "Long-Run Saving Dynamics: Evidence from Unexpected Inheritances," The Review of Economics and Statistics, MIT Press, vol. 104(5), pages 1079-1095, December.
    18. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    19. Hamish Low & Costas Meghir, 2017. "The Use of Structural Models in Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 33-58, Spring.
    20. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    21. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:61:y:2023:i:2:d:10.1007_s10614-021-10221-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.