IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v61y2023i1d10.1007_s10614-021-10197-4.html
   My bibliography  Save this article

A Novel High Dimensional Fitted Scheme for Stochastic Optimal Control Problems

Author

Listed:
  • Christelle Dleuna Nyoumbi

    (Institut de Mathématiques et de Sciences Physiques de l’Université d’Abomey Calavi)

  • Antoine Tambue

    (Western Norway University of Applied Sciences)

Abstract

Stochastic optimal principle leads to the resolution of a partial differential equation (PDE), namely the Hamilton–Jacobi–Bellman (HJB) equation. In general, this equation cannot be solved analytically, thus numerical algorithms are the only tools to provide accurate approximations. The aims of this paper is to introduce a novel fitted finite volume method to solve high dimensional degenerated HJB equation from stochastic optimal control problems in high dimension ( $$ n\ge 3$$ n ≥ 3 ). The challenge here is due to the nature of our HJB equation which is a degenerated second-order partial differential equation coupled with an optimization problem. For such problems, standard scheme such as finite difference method losses its monotonicity and therefore the convergence toward the viscosity solution may not be guarantee. We discretize the HJB equation using the fitted finite volume method, well known to tackle degenerated PDEs, while the time discretisation is performed using the Implicit Euler scheme.. We show that matrices resulting from spatial discretization and temporal discretization are M-matrices. Numerical results in finance demonstrating the accuracy of the proposed numerical method comparing to the standard finite difference method are provided.

Suggested Citation

  • Christelle Dleuna Nyoumbi & Antoine Tambue, 2023. "A Novel High Dimensional Fitted Scheme for Stochastic Optimal Control Problems," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 1-34, January.
  • Handle: RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-021-10197-4
    DOI: 10.1007/s10614-021-10197-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10197-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10197-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vicky Henderson & Kamil Klad'ivko & Michael Monoyios & Christoph Reisinger, 2017. "Executive stock option exercise with full and partial information on a drift change point," Papers 1709.10141, arXiv.org, revised Jul 2020.
    2. Pablo T. Rodriguez-Gonzalez & Vicente Rico-Ramirez & Ramiro Rico-Martinez & Urmila M. Diwekar, 2019. "A New Approach to Solving Stochastic Optimal Control Problems," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    3. Cyril B'en'ezet & Jean-Franc{c}ois Chassagneux & Christoph Reisinger, 2019. "A numerical scheme for the quantile hedging problem," Papers 1902.11228, arXiv.org.
    4. Song-Ping Zhu & Guiyuan Ma, 2018. "An analytical solution for the HJB equation arising from the Merton problem," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-26, March.
    5. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. Söderlind, Paul, 2009. "The C-CAPM without ex post data," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 721-729, December.
    3. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    4. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    5. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    6. Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
    7. Martin Melecky, 2012. "Choosing The Currency Structure Of Foreign‐Currency Debt: A Review Of Policy Approaches," Journal of International Development, John Wiley & Sons, Ltd., vol. 24(2), pages 133-151, March.
    8. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    10. Feil, Jan-Henning & Musshoff, Oliver, 2013. "Investment, disinvestment and policy impact analysis in the dairy sector: a real options approach," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 159229, Humboldt University Berlin, Department of Agricultural Economics.
    11. Romuald N. Kenmoe S & Carine D. Tafou, 2014. "The Implied Volatility Analysis: The South African Experience," Papers 1403.5965, arXiv.org.
    12. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    13. F. Gonzalez Miranda & N. Burgess, 1997. "Modelling market volatilities: the neural network perspective," The European Journal of Finance, Taylor & Francis Journals, vol. 3(2), pages 137-157.
    14. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    15. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    16. Hardin, Erin M. & Bryant, Henry L., 2016. "A Real Option Approach to Valuing and Hedging Cropland Obligations," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230148, Southern Agricultural Economics Association.
    17. Hilscher, Jens, 2007. "Is the corporate bond market forward looking?," Working Paper Series 800, European Central Bank.
    18. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    19. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    20. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-021-10197-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.