IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v59y2022i2d10.1007_s10614-021-10106-9.html
   My bibliography  Save this article

A Regression-Based Calibration Method for Agent-Based Models

Author

Listed:
  • Siyan Chen

    (Shantou University)

  • Saul Desiderio

    (Shantou University)

Abstract

Because of their complexity, taking agent-based models to the data is still an unresolved issue. In this paper we propose a method to calibrate the model parameters on real data that is based on a novel global sensitivity analysis procedure. The innovative feature of this procedure is that it allows to estimate regression meta-models for the relationship between model parameters and model output without resorting to Monte Carlo simulations to eliminate the effect of randomness. This is achieved by sampling at the same time both the parameters and the seed of the random numbers generator in a random fashion. If correctly specified, the meta-models can be directly used to consistently estimate the average response of the ABM to any parameter vector input by the modeler and, as a consequence, also the distance between real and simulated data. The advantage of the proposed method is twofold: it is very parsimonious in terms of computational time and is relatively easy to implement, being it based on elementary econometric techniques.

Suggested Citation

  • Siyan Chen & Saul Desiderio, 2022. "A Regression-Based Calibration Method for Agent-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 687-700, February.
  • Handle: RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10106-9
    DOI: 10.1007/s10614-021-10106-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10106-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10106-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/4pa18fd9lf9h59m4vfavfcf61e is not listed on IDEAS
    2. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    3. Sylvain Barde & Sander van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Working Papers hal-03458672, HAL.
    4. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
    5. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    6. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Chen, Siyan & Desiderio, Saul, 2020. "Job duration and inequality," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-27.
    8. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    9. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, January.
    10. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    11. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    12. Leonardo Bargigli & Luca Riccetti & Alberto Russo & Mauro Gallegati, 2020. "Network calibration and metamodeling of a financial accelerator agent based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(2), pages 413-440, April.
    13. Chen, Siyan & Desiderio, Saul, 2018. "Computational evidence on the distributive properties of monetary policy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-32.
    14. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    15. Bianchi, Carlo & Cirillo, Pasquale & Gallegati, Mauro & Vagliasindi, Pietro A., 2008. "Validation in agent-based models: An investigation on the CATS model," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 947-964, September.
    16. Carlo Bianchi & Pasquale Cirillo & Mauro Gallegati & Pietro Vagliasindi, 2007. "Validating and Calibrating Agent-Based Models: A Case Study," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 245-264, October.
    17. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    18. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    19. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108414999, January.
    20. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    21. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    2. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    3. Leonardo Bargigli & Filippo Pietrini, 2024. "Conformism, distinction and heterogeneity in an agent-based model of fads," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 807-829, October.
    4. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    5. Siyan Chen & Saul Desiderio, 2023. "An agent-based framework for the analysis of the macroeconomic effects of population aging," Journal of Evolutionary Economics, Springer, vol. 33(2), pages 393-427, April.
    6. Karl Naumann-Woleske & Max Sina Knicker & Michael Benzaquen & Jean-Philippe Bouchaud, 2021. "Exploration of the Parameter Space in Macroeconomic Agent-Based Models," Papers 2111.08654, arXiv.org, revised Aug 2022.
    7. Sylvain Barde, 2022. "Bayesian Estimation of Large-Scale Simulation Models with Gaussian Process Regression Surrogates," Studies in Economics 2203, School of Economics, University of Kent.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyan Chen & Saul Desiderio, 2022. "Calibration of Agent-Based Models by Means of Meta-Modeling and Nonparametric Regression," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1457-1478, December.
    2. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    3. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    4. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    5. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    7. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    8. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    9. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    10. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    11. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    12. repec:hal:spmain:info:hdl:2441/dcditnq6282sbu1u151qe5p7f is not listed on IDEAS
    13. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    14. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    15. repec:spo:wpmain:info:hdl:2441/dcditnq6282sbu1u151qe5p7f is not listed on IDEAS
    16. Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
    17. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    18. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    19. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. repec:spo:wpmain:info:hdl:2441/4pa18fd9lf9h59m4vfavfcf61e is not listed on IDEAS
    21. Mario Martinoli & Alessio Moneta & Gianluca Pallante, 2022. "Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search," LEM Papers Series 2022/33, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    22. repec:hal:spmain:info:hdl:2441/4pa18fd9lf9h59m4vfavfcf61e is not listed on IDEAS
    23. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    24. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    25. Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    26. Sylvain Barde & Sander van der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Studies in Economics 1712, School of Economics, University of Kent.

    More about this item

    Keywords

    Agent-based models; Calibration; Meta-modeling; Global sensitivity analysis;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10106-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.