IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v56y2020i1d10.1007_s10614-019-09899-7.html
   My bibliography  Save this article

About Long-Term Cross-Currency Bermuda Swaption Pricing

Author

Listed:
  • Bünyamin Erkan

    (Banque de France)

  • Jean-Luc Prigent

    (University of Cergy-Pontoise)

Abstract

This paper details first the pricing process of a Bermuda swaption and, in a second step, the pricing of a cross-currency Bermuda swaption from a computational point of view. Our aim is to examine the lengthy process that provides a Bermuda swaption price with special attention to the tests used for assessing the coherence of the price. We only consider long-term derivatives that lead to issues related to missing data and require calibration adjustment. We also deal with the sensitivity of the cross-currency swaption price to the choice of model. The standard model to price this kind of options is a 3-factors hybrid model based on the Libor Market Model that typically combines the domestic market, the foreign market and the foreign exchange market. We study the impact of each one of these stochastic factors on the price of a long-term cross-currency Bermuda swaption. In particular, this study illustrates the relation between the cross-currency product and the volatility of each one of the three markets involved (domestic, foreign and the foreign exchange market).

Suggested Citation

  • Bünyamin Erkan & Jean-Luc Prigent, 2020. "About Long-Term Cross-Currency Bermuda Swaption Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 239-262, June.
  • Handle: RePEc:kap:compec:v:56:y:2020:i:1:d:10.1007_s10614-019-09899-7
    DOI: 10.1007/s10614-019-09899-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09899-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09899-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Marc Henrard, 2003. "Explicit bond option and swaption formula in Heath-Jarrow-Morton one factor model," Finance 0310009, University Library of Munich, Germany.
    4. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    5. Marc Henrard, 2005. "Bermudan swaptions in Hull-White one-factor model: analytical and numerical approaches," Finance 0505023, University Library of Munich, Germany.
    6. Marc Henrard, 2003. "Explicit Bond Option Formula In Heath–Jarrow–Morton One Factor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 57-72.
    7. Jensen, Malene Shin & Svenstrup, Mikkel, 2002. "Efficient Control Variates and Strategies for Bermudan Swaptions in a Libor Market Model," Finance Working Papers 02-23, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    8. Denis Belomestny, 2011. "Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates," Finance and Stochastics, Springer, vol. 15(4), pages 655-683, December.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    2. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    3. Yi Yang & Jianan Wang & Youhua Chen & Zhiyuan Chen & Yanchu Liu, 2020. "Optimal procurement strategies for contractual assembly systems with fluctuating procurement price," Annals of Operations Research, Springer, vol. 291(1), pages 1027-1059, August.
    4. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    5. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    6. Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
    7. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
    8. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    9. Denis Belomestny & John Schoenmakers & Fabian Dickmann, 2013. "Multilevel dual approach for pricing American style derivatives," Finance and Stochastics, Springer, vol. 17(4), pages 717-742, October.
    10. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    11. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    12. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    13. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    14. Doan, Viet_Dung & Gaikwad, Abhijeet & Bossy, Mireille & Baude, Françoise & Stokes-Rees, Ian, 2010. "Parallel pricing algorithms for multi-dimensional Bermudan/American options using Monte Carlo methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 568-577.
    15. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    16. David A. Goldberg & Yilun Chen, 2018. "Polynomial time algorithm for optimal stopping with fixed accuracy," Papers 1807.02227, arXiv.org, revised May 2024.
    17. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    18. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    19. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    20. Belomestny, Denis & Milstein, Grigori N., 2006. "Adaptive simulation algorithms for pricing American and Bermudan options by local analysis of financial market," SFB 649 Discussion Papers 2006-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:56:y:2020:i:1:d:10.1007_s10614-019-09899-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.