IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i3d10.1007_s10614-019-09922-x.html
   My bibliography  Save this article

Classifier Based Stock Trading Recommender Systems for Indian stocks: An Empirical Evaluation

Author

Listed:
  • V. Vismayaa

    (Amrita Vishwa Vidyapeetham)

  • K. R. Pooja

    (Amrita Vishwa Vidyapeetham)

  • A. Alekhya

    (Amrita Vishwa Vidyapeetham)

  • C. N. Malavika

    (Amrita Vishwa Vidyapeetham)

  • Binoy B. Nair

    (Amrita Vishwa Vidyapeetham)

  • P. N. Kumar

    (Amrita Vishwa Vidyapeetham)

Abstract

Recommender systems that can suggest the user when to buy and sell stocks can be of immense help to those who wish to trade in stocks but are constrained by their limited knowledge of stock market dynamics. Traditionally, the trading recommendations have been generated on the basis of technical analysis. However, recent research in the field indicates that soft computing/data mining based recommender systems are also capable of generating profitable trading recommendations. An attempt has been made in this study to generate novel classifier based stock trading recommender systems that employ historical stock price data and technical indicators as input features. Moreover, there have been very few studies on the effectiveness recommender systems in the context of India, the world’s sixth largest economy and home to one of the world’s largest stock exchanges: the Bombay Stock Exchange (BSE). This study presents an empirical evaluation the effectiveness of five single classifier and six ensemble classifier based recommender systems on a total of 293 stocks drawn from the BSE. Recommender system performance for each stock is evaluated based on classification accuracy and eight economic performance measures. Results indicate that the proposed approach can indeed be used successfully for generating profitable trading recommendations.

Suggested Citation

  • V. Vismayaa & K. R. Pooja & A. Alekhya & C. N. Malavika & Binoy B. Nair & P. N. Kumar, 2020. "Classifier Based Stock Trading Recommender Systems for Indian stocks: An Empirical Evaluation," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 901-923, March.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09922-x
    DOI: 10.1007/s10614-019-09922-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09922-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09922-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guglielmo Caporale & Luis Gil-Alana & Alex Plastun & Inna Makarenko, 2016. "Intraday Anomalies and Market Efficiency: A Trading Robot Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 47(2), pages 275-295, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvind Kumar Sinha & Pradeep Shende, 2024. "Uncertainty Optimization Based Feature Selection Model for Stock Marketing," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 357-389, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021. "Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
    2. Su, Zhifang & Bao, Haohua & Li, Qifang & Xu, Boyu & Cui, Xin, 2022. "The prediction of price gap anomaly in Chinese stock market: Evidence from the dependent functional logit model," Finance Research Letters, Elsevier, vol. 47(PB).
    3. Umar, Zaghum & Adekoya, Oluwasegun Babatunde & Oliyide, Johnson Ayobami & Gubareva, Mariya, 2021. "Media sentiment and short stocks performance during a systemic crisis," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Mohammad Arashi & Mohammad Mahdi Rounaghi, 2022. "Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model," Future Business Journal, Springer, vol. 8(1), pages 1-12, December.
    5. Plastun, Alex & Sibande, Xolani & Gupta, Rangan & Wohar, Mark E., 2020. "Price gap anomaly in the US stock market: The whole story," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Maria Caporale, Guglielmo & Zakirova, Valentina, 2017. "Calendar anomalies in the Russian stock market," Russian Journal of Economics, Elsevier, vol. 3(1), pages 101-108.
    7. Girardin, Eric & Salimi Namin, Fatemeh, 2019. "The January effect in the foreign exchange market: Evidence for seasonal equity carry trades," Economic Modelling, Elsevier, vol. 81(C), pages 422-439.
    8. I. Marta Miranda García & María‐Jesús Segovia‐Vargas & Usue Mori & José A. Lozano, 2023. "Early prediction of Ibex 35 movements," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1150-1166, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09922-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.