IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v50y2017i1d10.1007_s10614-016-9584-1.html
   My bibliography  Save this article

Wavelets Analysis on Structural Model for Default Prediction

Author

Listed:
  • Lu Han

    (Central University of Finance & Economics)

  • Ruihuan Ge

    (Central University of Finance & Economics)

Abstract

In recent years, to improve predictive ability of corporate defaults has become an important problem. In this paper, regarding on characteristics of listed companies, we sampled 100 companies according to industry types, constructed wavelet structural model, experimented with wavelet decomposition proceeds to get low frequency and high frequency sequence, built the prediction model for both sequences, and then using the prediction of future returns to reconstruct predictive returns, thus avoiding accumulated prediction process with earnings volatility of time series model, therefore enhanced the precision of default prediction. Finally we compared wavelet structural model with time series structural model based on the predictive default distance of China’s listed companies.

Suggested Citation

  • Lu Han & Ruihuan Ge, 2017. "Wavelets Analysis on Structural Model for Default Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 111-140, June.
  • Handle: RePEc:kap:compec:v:50:y:2017:i:1:d:10.1007_s10614-016-9584-1
    DOI: 10.1007/s10614-016-9584-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-016-9584-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-016-9584-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiou, Jer-Shiou & Lee, Yen-Hsien, 2009. "Jump dynamics and volatility: Oil and the stock markets," Energy, Elsevier, vol. 34(6), pages 788-796.
    2. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    3. Yogo, Motohiro, 2008. "Measuring business cycles: A wavelet analysis of economic time series," Economics Letters, Elsevier, vol. 100(2), pages 208-212, August.
    4. Rossitsa Yalamova, 2006. "Wavelet Test of Multifractality of Asia-Pacific Index Price Series," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 2(1), pages 63-83.
    5. Roger Bowden & Jennifer Zhu, 2008. "The agribusiness cycle and its wavelets," Empirical Economics, Springer, vol. 34(3), pages 603-622, June.
    6. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    7. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    8. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    9. Viviana Fernandez & Ali M. Kutan, 2005. "Do Regional Integration Agreements Increase Business-Cycle Convergence? Evidence From APEC and NAFTA," William Davidson Institute Working Papers Series wp765, William Davidson Institute at the University of Michigan.
    10. Timotej Jagri, 2002. "Measuring Business Cycles: The Case of Slovenia," Eastern European Economics, Taylor & Francis Journals, vol. 40(1), pages 63-87, January.
    11. Timotej Jagric, 2003. "Business Cycles in Central and East European Countries," Eastern European Economics, Taylor & Francis Journals, vol. 41(5), pages 6-23, January.
    12. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Ting Chen & Wan-Ni Lai & Edward W. Sun, 2019. "Jump Detection and Noise Separation by a Singular Wavelet Method for Predictive Analytics of High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 809-844, August.
    2. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    3. Indranil Ghosh & Manas K. Sanyal & R. K. Jana, 2021. "Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 503-527, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cifter, Atilla & Yilmazer, Sait & Cifter, Elif, 2009. "Analysis of sectoral credit default cycle dependency with wavelet networks: Evidence from Turkey," Economic Modelling, Elsevier, vol. 26(6), pages 1382-1388, November.
    2. Jammazi, Rania, 2012. "Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach," Energy, Elsevier, vol. 37(1), pages 430-454.
    3. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    4. Gatfaoui, Hayette, 2016. "Linking the gas and oil markets with the stock market: Investigating the U.S. relationship," Energy Economics, Elsevier, vol. 53(C), pages 5-16.
    5. Zhu, Hui-Ming & Li, Su-Fang & Yu, Keming, 2011. "Crude oil shocks and stock markets: A panel threshold cointegration approach," Energy Economics, Elsevier, vol. 33(5), pages 987-994, September.
    6. Benhmad, François, 2013. "Dynamic cyclical comovements between oil prices and US GDP: A wavelet perspective," Energy Policy, Elsevier, vol. 57(C), pages 141-151.
    7. Naser, Hanan & Ahmed, Abdul Rashid, 2016. "Oil Price Shocks and Stock Market Performance in Emerging Economies: Some Evidence using FAVAR Models," MPRA Paper 77868, University Library of Munich, Germany.
    8. Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
    9. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2014. "Wavelet-based evidence of the impact of oil prices on stock returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 145-176.
    10. Ben-Salha, Ousama & Mokni, Khaled, 2022. "Detrended cross-correlation analysis in quantiles between oil price and the US stock market," Energy, Elsevier, vol. 242(C).
    11. Jammazi, Rania, 2012. "Cross dynamics of oil-stock interactions: A redundant wavelet analysis," Energy, Elsevier, vol. 44(1), pages 750-777.
    12. Tim Friedhoff & Cam-Duc Au & Philippe Krahnhof, 2023. "Analysis of the Impact of Orthogonalized Brent Oil Price Shocks on the Returns of Dependent Industries in Times of the Russian War," MUNI ECON Working Papers 2023-04, Masaryk University.
    13. Lubos Hanus & Lukas Vacha, 2015. "Business cycle synchronization of the Visegrad Four and the European Union," Working Papers IES 2015/19, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2015.
    14. Kožić, Ivan & Sever, Ivan, 2014. "Measuring business cycles: Empirical Mode Decomposition of economic time series," Economics Letters, Elsevier, vol. 123(3), pages 287-290.
    15. Christian Urom & Gideon Ndubuisi & Jude Ozor, 2021. "Economic activity, and financial and commodity markets’ shocks: An analysis of implied volatility indexes," International Economics, CEPII research center, issue 165, pages 51-66.
    16. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    17. Mohamed Amine BOUTABA, 2009. "Does Carbon Affect European Oil Companies' Equity Values?," EcoMod2009 21500018, EcoMod.
    18. Crowley, Patrick M., 2010. "Long cycles in growth: explorations using new frequency domain techniques with US data," Bank of Finland Research Discussion Papers 6/2010, Bank of Finland.
    19. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
    20. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:50:y:2017:i:1:d:10.1007_s10614-016-9584-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.