IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v45y2015i2p323-336.html
   My bibliography  Save this article

Finding an Initial Basic Feasible Solution for DEA Models with an Application on Bank Industry

Author

Listed:
  • Mehdi Toloo
  • Atefeh Masoumzadeh
  • Mona Barat

Abstract

Nowadays, algorithms and computer programs, which are going to speed up, short time to run and less memory to occupy have special importance. Toward these ends, researchers have always regarded suitable strategies and algorithms with the least computations. Since linear programming (LP) has been introduced, interest in it spreads rapidly among scientists. To solve an LP, the simplex method has been developed and since then many researchers have contributed to the extension and progression of LP and obviously simplex method. A vast literature has been grown out of this original method in mathematical theory, new algorithms, and applied nature. Solving an LP via simplex method needs an initial basic feasible solution (IBFS), but in many situations such a solution is not readily available so artificial variables will be resorted. These artificial variables must be dropped to zero, if possible. There are two main methods that can be used to eliminate the artificial variables: two-phase method and Big-M method. Data envelopment analysis (DEA) applies individual LP for evaluating performance of decision making units, consequently, to solve these LPs an IBFS must be on hand. The main contribution of this paper is to introduce a closed form of IBFS for conventional DEA models, which helps us not to deal with artificial variables directly. We apply the proposed form to a real-data set to illustrate the applicability of the new approach. The results of this study indicate that using the closed form of IBFS can reduce at least 50 % of the whole computations. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Mehdi Toloo & Atefeh Masoumzadeh & Mona Barat, 2015. "Finding an Initial Basic Feasible Solution for DEA Models with an Application on Bank Industry," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 323-336, February.
  • Handle: RePEc:kap:compec:v:45:y:2015:i:2:p:323-336
    DOI: 10.1007/s10614-014-9423-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-014-9423-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-014-9423-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, February.
    4. Saeid Mehrabian & Gholam R. Jahanshahloo & Mohammad R. Alirezaee & Gholam R. Amin, 2000. "An Assurance Interval for the Non-Archimedean Epsilon in DEA Models," Operations Research, INFORMS, vol. 48(2), pages 344-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toloo, Mehdi & Babaee, Seddigheh, 2015. "On variable reductions in data envelopment analysis with an illustrative application to a gas company," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 527-533.
    2. Ai-bing Ji & Ye Ji & Yanhua Qiao, 2018. "DEA-Based Piecewise Linear Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 809-820, April.
    3. Mahdiloo, Mahdi & Toloo, Mehdi & Duong, Thach-Thao & Farzipoor Saen, Reza & Tatham, Peter, 2018. "Integrated data envelopment analysis: Linear vs. nonlinear model," European Journal of Operational Research, Elsevier, vol. 268(1), pages 255-267.
    4. Mehdi Toloo & Rahele Jalili, 2016. "LU Decomposition in DEA with an Application to Hospitals," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 473-488, March.
    5. Mehdi Toloo & Soroosh Nalchigar & Babak Sohrabi, 2018. "Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1027-1051, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Toloo & Rahele Jalili, 2016. "LU Decomposition in DEA with an Application to Hospitals," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 473-488, March.
    2. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, August.
    3. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    4. Peter Fernandes Wanke & Rebecca de Mattos, 2014. "Capacity Issues and Efficiency Drivers in Brazilian Bulk Terminals," Brazilian Business Review, Fucape Business School, vol. 11(5), pages 72-98, October.
    5. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    6. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    7. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    8. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    9. Subhash C. Ray & Lei Chen, 2015. "Data Envelopment Analysis for Performance Evaluation: A Child’s Guide," Springer Books, in: Subhash C. Ray & Subal C. Kumbhakar & Pami Dua (ed.), Benchmarking for Performance Evaluation, edition 127, chapter 0, pages 75-116, Springer.
    10. Mohsen Afsharian & Anna Kryvko & Peter Reichling, 2011. "Efficiency and Its Impact on the Performance of European Commercial Banks," FEMM Working Papers 110018, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    11. Miningou, Élisé Wendlassida & Vierstraete, Valérie, 2013. "Households' living situation and the efficient provision of primary education in Burkina Faso," Economic Modelling, Elsevier, vol. 35(C), pages 910-917.
    12. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    13. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    14. Korhonen, Pekka J. & Dehnokhalaji, Akram & Nasrabadi, Nasim, 2018. "A lexicographic radial projection onto the efficient frontier in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1005-1012.
    15. Rize Jing & Tingting Xu & Xiaozhen Lai & Elham Mahmoudi & Hai Fang, 2019. "Technical Efficiency of Public and Private Hospitals in Beijing, China: A Comparative Study," IJERPH, MDPI, vol. 17(1), pages 1-18, December.
    16. Chin‐wei Huang & Hsiao‐Yin Chen, 2023. "Using nonradial metafrontier data envelopment analysis to evaluate the metatechnology and metafactor ratios for the Taiwanese hotel industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 1904-1919, June.
    17. W. Cooper & C. Lovell, 2011. "History lessons," Journal of Productivity Analysis, Springer, vol. 36(2), pages 193-200, October.
    18. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    19. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    20. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:45:y:2015:i:2:p:323-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.