IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v43y2014i3p301-311.html
   My bibliography  Save this article

Building Technical Trading System with Genetic Programming: A New Method to Test the Efficiency of Chinese Stock Markets

Author

Listed:
  • Hui Qu
  • Xindan Li

Abstract

Testing whether technical trading rules can beat buy-and-hold strategy is a common approach to study the efficiency of stock markets. Noticing that the common approach of evaluating popular technical trading rules’ profitability would result in the biases of data snooping and incomplete test, we build a technical trading system with genetic programming to test the efficiency of Chinese stock markets. This system takes historical prices and volumes as inputs, randomly generates treelike structured technical trading rules composed of basic functions, and optimizes the rules using genetic programming according to the inputs. Using daily prices and volumes of Shenzhen Stock Exchange 100 index from January 2, 2004 to March 12, 2010, we find out that the optimal technical trading rules generated by our technical trading system have statistically significant out-of-sample excess returns compared with buy-and-hold strategy considering realistic transaction costs. Therefore, we conclude that Chinese stock markets have not achieved weak-form efficiency. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Hui Qu & Xindan Li, 2014. "Building Technical Trading System with Genetic Programming: A New Method to Test the Efficiency of Chinese Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 43(3), pages 301-311, March.
  • Handle: RePEc:kap:compec:v:43:y:2014:i:3:p:301-311
    DOI: 10.1007/s10614-013-9369-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-013-9369-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-013-9369-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    2. Bill Cai & Charlie Cai & Kevin Keasey, 2005. "Market Efficiency and Returns to Simple Technical Trading Rules: Further Evidence from U.S., U.K., Asian and Chinese Stock Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(1), pages 45-60, March.
    3. Janice How & Martin Ling & Peter Verhoeven, 2010. "Does size matter? A genetic programming approach to technical trading," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 131-140.
    4. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    5. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    6. Ratner, Mitchell & Leal, Ricardo P. C., 1999. "Tests of technical trading strategies in the emerging equity markets of Latin America and Asia," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1887-1905, December.
    7. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Alexakis & Michael Dowling & Konstantinos Eleftheriou & Michael Polemis, 2021. "Textual Machine Learning: An Application to Computational Economics Research," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 369-385, January.
    2. Hakan Er & Adnan Hushmat, 2017. "The application of technical trading rules developed from spot market prices on futures market prices using CAPM," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(3), pages 313-353, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Terence Tai-Leung & Lam, Tau-Hing & Yan, Isabel Kit-Ming, 2012. "Is the Chinese stock market really inefficient?," China Economic Review, Elsevier, vol. 23(1), pages 122-137.
    2. Wang, Zi-Mei & Chiao, Chaoshin & Chang, Ya-Ting, 2012. "Technical analyses and order submission behaviors: Evidence from an emerging market," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 109-128.
    3. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    4. Zhu, Hong & Jiang, Zhi-Qiang & Li, Sai-Ping & Zhou, Wei-Xing, 2015. "Profitability of simple technical trading rules of Chinese stock exchange indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 75-84.
    5. Salma Khand & Vivake Anand & Mohammad Nadeem Qureshi, 2020. "The Predictability and Profitability of Simple Moving Averages and Trading Range Breakout Rules in the Pakistan Stock Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-38, March.
    6. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    7. Lijun Wang & Haizhong An & Xiaohua Xia & Xiaojia Liu & Xiaoqi Sun & Xuan Huang, 2014. "Generating Moving Average Trading Rules on the Oil Futures Market with Genetic Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, May.
    8. Camillo Lento & Nikola Gradojevic, 2022. "The Profitability of Technical Analysis during the COVID-19 Market Meltdown," JRFM, MDPI, vol. 15(5), pages 1-19, April.
    9. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    10. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," JRFM, MDPI, vol. 7(1), pages 1-12, February.
    11. Groenewold, Nicolaas & Kan Tang, Sam Hak & Wu, Yanrui, 2008. "The profitability of regression-based trading rules for the Shanghai stock market," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 411-430.
    12. Osman Kilic & Joseph M. Marks & Kiseok Nam, 2022. "Predictable asset price dynamics, risk-return tradeoff, and investor behavior," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 749-791, August.
    13. Lee, Chun I & Gleason, Kimberly C. & Mathur, Ike, 2001. "Trading rule profits in Latin American currency spot rates," International Review of Financial Analysis, Elsevier, vol. 10(2), pages 135-156.
    14. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    15. Yochanan Shachmurove & Uri BenZion & Paul Klein & Joseph Yagil, 2001. "A Moving Average Comparison of the Tel-Aviv 25 and S&P 500 Stock Indices," Penn CARESS Working Papers 4731f3394c43bebf4d3191c81, Penn Economics Department.
    16. Ming-Ming, Lai & Siok-Hwa, Lau, 2006. "The profitability of the simple moving averages and trading range breakout in the Asian stock markets," Journal of Asian Economics, Elsevier, vol. 17(1), pages 144-170, February.
    17. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    18. Grobys, Klaus & Ahmed, Shaker & Sapkota, Niranjan, 2020. "Technical trading rules in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 32(C).
    19. Chen, Chien-Hua & Su, Xuan-Qi & Lin, Jun-Biao, 2016. "The role of information uncertainty in moving-average technical analysis: A study of individual stock-option issuance in Taiwan," Finance Research Letters, Elsevier, vol. 18(C), pages 263-272.
    20. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:43:y:2014:i:3:p:301-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.