IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v42y2013i2p175-198.html
   My bibliography  Save this article

Tensor Spline Approximation in Economic Dynamics with Uncertainties

Author

Listed:
  • Moody Chu
  • Chun-Hung Kuo
  • Matthew Lin

Abstract

Modern economic theory views the economy as a dynamical system in which rational decisions are made in the face of uncertainties. Optimizing decisions over time on market behavior such as consumption, investment, labor supply, and technology innovation is of practical importance. Interpreting all market behavior in a broad sense, the problem finds further applications in many areas other than economics. Finding the policy function inherent in the associated Euler equation has been an important but challenging task. This note proposes using composite 1-dimensional cubic splines in tensor form to process the Newton iterative scheme on approximating the unknown policy functions. This tensor spline approach has the advantages of freedom in the node collocation, simplicity in the derivative calculation, fast convergence, and high precision over the conventional projection methods. Applications to the neoclassical growth model with leisure choice are used to demonstrate the working of the idea. In particular, tensor products are employed throughout to simplify and effectuate the operations. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Moody Chu & Chun-Hung Kuo & Matthew Lin, 2013. "Tensor Spline Approximation in Economic Dynamics with Uncertainties," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 175-198, August.
  • Handle: RePEc:kap:compec:v:42:y:2013:i:2:p:175-198
    DOI: 10.1007/s10614-012-9331-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-012-9331-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-012-9331-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerome Adda & Russell W. Cooper, 2003. "Dynamic Economics: Quantitative Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012014, April.
    2. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    3. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    4. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    5. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    6. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    7. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    5. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    6. Dorofeenko, Victor & Lee, Gabriel S. & Salyer, Kevin D., 2010. "A new algorithm for solving dynamic stochastic macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 388-403, March.
    7. Hintermaier, Thomas & Koeniger, Winfried, 2010. "The method of endogenous gridpoints with occasionally binding constraints among endogenous variables," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2074-2088, October.
    8. Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Solving DSGE models with perturbation methods and a change of variables," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2509-2531, December.
    9. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    10. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "The Market Resources Method for Solving Dynamic Optimization Problems," Koç University-TUSIAD Economic Research Forum Working Papers 1607, Koc University-TUSIAD Economic Research Forum.
    11. Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez, 2003. "Some Results on the Solution of the Neoclassical Growth Model," PIER Working Paper Archive 04-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Dario Caldara & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez & Wen Yao, 2009. "Computing DSGE Models with Recursive Preferences," PIER Working Paper Archive 09-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    14. repec:mea:meawpa:13274 is not listed on IDEAS
    15. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    16. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    17. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    18. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    19. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    20. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    21. Francisco (F.) Blasques & Marc Nientker, 2019. "Transformed Perturbation Solutions for Dynamic Stochastic General Equilibrium Models," Tinbergen Institute Discussion Papers 19-012/III, Tinbergen Institute, revised 09 Feb 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:42:y:2013:i:2:p:175-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.