IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v6y2003i2p408-420.html
   My bibliography  Save this article

Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter

Author

Listed:
  • Renate Meyer
  • David A. Fournier
  • Andreas Berg

Abstract

Stochastic volatility (SV) models provide more realistic and flexible alternatives to ARCH-type models for describing time-varying volatility exhibited in many financial time series. They belong to the wide class of nonlinear state-space models. As classical parameter estimation for SV models is difficult due to the intractable form of the likelihood, Bayesian approaches using Markov chain Monte Carlo (MCMC) techniques for posterior computations have been suggested. In this paper, an efficient MCMC algorithm for posterior computation in SV models is presented. It is related to the integration sampler of Kim et al.(1998) but does not need an offset mixture of normals approximation to the likelihood. Instead, the extended Kalman Filter is combined with the Laplace approximation to compute the likelihood function by integrating out all unknown system states. We make use of automatic differentiation in computing the posterior mode and in designing an efficient Metropolis--Hastings algorithm. We compare the new algorithm to the single-update Gibbs sampler and the integration sampler using a well-known time series of pound/dollar exchange rates. Copyright Royal Economic Society, 2003

Suggested Citation

  • Renate Meyer & David A. Fournier & Andreas Berg, 2003. "Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 408-420, December.
  • Handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:408-420
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    2. Matthew Smith, 2012. "Estimating Nonlinear Economic Models Using Surrogate Transitions," 2012 Meeting Papers 494, Society for Economic Dynamics.
    3. Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    4. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    5. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    6. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    7. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    8. Manabu Asai, 2005. "Comparison of MCMC Methods for Estimating Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 281-301, June.
    9. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:408-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.