IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v22y2015i4p397-427.html
   My bibliography  Save this article

Credit Risk Analysis on Euro Government Bonds-Term Structures of Default Probabilities

Author

Listed:
  • Takeaki Kariya
  • Yoshiro Yamamura
  • Yoko Tanokura
  • Zhu Wang

Abstract

In this paper, we make a comprehensive credit risk analysis on government bonds (GBs) of Germany, France, Italy, Spain and Greece over the period 2007.4–2012.3, where interest rate (IR) differential, GB price differential, default probability (DP) and credit default swap (CDS) are considered. First, applying the GB-pricing model in Kariya (Quantitative methods for portfolio analysis: MTV approach. Springer, Berlin, 1993 ) to these GB prices, we derive the term structures of interest rates (TSIRs) and discuss on the Maastricht convergence condition for the IR-differentials among these states relative to the German TSIRs and make some observations on some divergent tendencies. The results are associated with the business cycles and budgetary condition of each state. In the second part, to substantiate this viewpoint, we first make credit risk price spread analysis on price differentials and derive the term structures of default probabilities (TSDPs) of the French, Italian, Spanish and Greek GBs relative to the German GBs, where the corporate bond (CB) model proposed in Kariya (Advances in modern statistical theory and applications: a Festschrift for Professor Morris L. Eaton. Institute of Mathematical Statistics, Beachwood, 2013 ) is used in the derivation. Then it is empirically shown that the TSDPs show a significant divergent movement at the end of 2011, affected by the Euro Crisis. In addition, the TSDPs of these GBs are empirically shown to be almost linear functions of the differences of the TSIRs, which enables us to state the Maastricht condition in terms of DP. Thirdly the effectiveness of our TSDPs is empirically verified by comparing them with the corresponding CDSs against US dollars. Copyright The Author(s) 2015

Suggested Citation

  • Takeaki Kariya & Yoshiro Yamamura & Yoko Tanokura & Zhu Wang, 2015. "Credit Risk Analysis on Euro Government Bonds-Term Structures of Default Probabilities," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(4), pages 397-427, November.
  • Handle: RePEc:kap:apfinm:v:22:y:2015:i:4:p:397-427
    DOI: 10.1007/s10690-015-9202-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-015-9202-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-015-9202-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Takeaki Kariya & Jingsui Wang & Zhu Wang & Eiichi Doi & Yoshiro Yamamura, 2012. "Empirically Effective Bond Pricing Model and Analysis on Term Structures of Implied Interest Rates in Financial Crisis," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(3), pages 259-292, September.
    3. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Friewald, Nils & Jankowitsch, Rainer & Subrahmanyam, Marti G., 2012. "Illiquidity or credit deterioration: A study of liquidity in the US corporate bond market during financial crises," Journal of Financial Economics, Elsevier, vol. 105(1), pages 18-36.
    6. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    7. Duffie, Darrell, 2011. "Measuring Corporate Default Risk," OUP Catalogue, Oxford University Press, number 9780199279234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeaki Kariya & Yoshiro Yamamura & Koji Inui, 2019. "Empirical Credit Risk Ratings of Individual Corporate Bonds and Derivation of Term Structures of Default Probabilities," JRFM, MDPI, vol. 12(3), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeaki Kariya & Yoshiro Yamamura & Koji Inui, 2019. "Empirical Credit Risk Ratings of Individual Corporate Bonds and Derivation of Term Structures of Default Probabilities," JRFM, MDPI, vol. 12(3), pages 1-29, July.
    2. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2018. "A factor-based approach of bond portfolio value-at-risk: The informational roles of macroeconomic and financial stress factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 243-268.
    3. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2016. "What derives the bond portfolio value-at-risk: Information roles of macroeconomic and financial stress factors," SFB 649 Discussion Papers 2016-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2016-006 is not listed on IDEAS
    5. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    6. Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.
    7. Ye, Xiaoxia & Yu, Fan & Zhao, Ran, 2022. "Credit derivatives and corporate default prediction," Journal of Banking & Finance, Elsevier, vol. 138(C).
    8. repec:hum:wpaper:sfb649dp2016-059 is not listed on IDEAS
    9. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    10. RMI staff article, 2016. "NUS-RMI Credit Research Initiative Technical Report Version: 2016 Update 1," Global Credit Review (GCR), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 49-132.
    11. Schuster, Philipp & Uhrig-Homburg, Marliese, 2012. "The term structure of bond market liquidity conditional on the economic environment: An analysis of government guaranteed bonds," Working Paper Series in Economics 45, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    12. Xiu Xu & Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle, 2019. "Dynamic credit default swap curves in a network topology," Quantitative Finance, Taylor & Francis Journals, vol. 19(10), pages 1705-1726, October.
    13. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    14. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.
    15. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    17. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    18. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    19. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    20. João Frois Caldeira & Rangan Gupta & Muhammad Tahir Suleman & Hudson S. Torrent, 2021. "Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4312-4329, December.
    21. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    22. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:22:y:2015:i:4:p:397-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.