IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v19y2023i3d10.1007_s10436-023-00425-2.html
   My bibliography  Save this article

Co-jumps and recursive preferences in portfolio choices

Author

Listed:
  • Immacolata Oliva

    (Sapienza University of Rome)

  • Ilaria Stefani

    (Sapienza University of Rome)

Abstract

This paper investigates a multivariate, dynamic, continuous-time optimal consumption and portfolio allocation problem when the investor faces recursive utilities. The economy we are considering is described through both diffusion and discontinuities in the dynamics. We derive an approximated closed-form solution to optimal rules by exploiting standard dynamic programming techniques. Our findings are manifold. First, we obtain dynamic optimal weights, inversely proportional to volatility. Second, we show that both co-jumps frequency and intensity play a crucial role, as they considerably limit potential losses in the investors’ wealth. Third, we prove that jumps in precision reinforce the effect of jumps in price, further reducing optimal allocation. Finally, we highlight how co-jumps may influence investors’ choices regarding intertemporal consumption.

Suggested Citation

  • Immacolata Oliva & Ilaria Stefani, 2023. "Co-jumps and recursive preferences in portfolio choices," Annals of Finance, Springer, vol. 19(3), pages 291-324, September.
  • Handle: RePEc:kap:annfin:v:19:y:2023:i:3:d:10.1007_s10436-023-00425-2
    DOI: 10.1007/s10436-023-00425-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10436-023-00425-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-023-00425-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliva, I. & Renò, R., 2018. "Optimal portfolio allocation with volatility and co-jump risk that Markowitz would like," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 242-256.
    2. Campbell, John Y. & Koo, Hyeng Keun, 1997. "A comparison of numerical and analytic approximate solutions to an intertemporal consumption choice problem," Journal of Economic Dynamics and Control, Elsevier, vol. 21(2-3), pages 273-295.
    3. Weil, Philippe, 1989. "The equity premium puzzle and the risk-free rate puzzle," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 401-421, November.
    4. Xing Jin & Allen X. Zhang, 2012. "Decomposition of Optimal Portfolio Weight in a Jump-Diffusion Model and Its Applications," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2877-2919.
    5. LuisM. Viceira & John Y. Campbell, 2001. "Who Should Buy Long-Term Bonds?," American Economic Review, American Economic Association, vol. 91(1), pages 99-127, March.
    6. Ali Lazrak, 2004. "Generalized Stochastic Differential Utility and Preference for Information," Post-Print hal-00485707, HAL.
    7. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    8. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    9. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    10. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    11. Branger, Nicole & Schlag, Christian & Schneider, Eva, 2008. "Optimal portfolios when volatility can jump," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1087-1097, June.
    12. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    13. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    14. Peter P. Wakker, 2008. "Explaining the characteristics of the power (CRRA) utility family," Health Economics, John Wiley & Sons, Ltd., vol. 17(12), pages 1329-1344.
    15. Xing Jin & Dan Luo & Xudong Zeng, 2021. "Tail Risk and Robust Portfolio Decisions," Management Science, INFORMS, vol. 67(5), pages 3254-3275, May.
    16. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    17. Gonçalo Faria & João Correia-da-Silva, 2016. "Is stochastic volatility relevant for dynamic portfolio choice under ambiguity?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(7), pages 601-626, May.
    18. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    19. Peter P. Wakker, 2008. "Explaining the characteristics of the power (CRRA) utility family," Health Economics, John Wiley & Sons, Ltd., vol. 17(12), pages 1329-1344, December.
    20. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    21. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-357, April.
    22. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    23. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    24. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    25. Holger Kraft & Frank Seifried & Mogens Steffensen, 2013. "Consumption-portfolio optimization with recursive utility in incomplete markets," Finance and Stochastics, Springer, vol. 17(1), pages 161-196, January.
    26. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    27. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    28. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    29. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    30. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    31. repec:hal:spmain:info:hdl:2441/8686 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigeta, Yuki, 2022. "Quasi-hyperbolic discounting under recursive utility and consumption–investment decisions," Journal of Economic Theory, Elsevier, vol. 204(C).
    2. Oliva, I. & Renò, R., 2018. "Optimal portfolio allocation with volatility and co-jump risk that Markowitz would like," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 242-256.
    3. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    4. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    5. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    6. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    7. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    8. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    9. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    10. Zhao, Hui & Wang, Suxin, 2022. "Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1166-1180.
    11. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    12. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    13. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    14. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    15. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    16. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    17. Rytchkov, Oleg, 2016. "Time-Varying Margin Requirements and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 655-683, April.
    18. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    19. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    20. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.

    More about this item

    Keywords

    Asset allocation; Consumption; Stochastic volatility; Wishart process; Co-jumps; Recursive preferences; Dynamic programming;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:19:y:2023:i:3:d:10.1007_s10436-023-00425-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.