IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v13y2017i3d10.1007_s10436-017-0300-5.html
   My bibliography  Save this article

Quadratic minimization with portfolio and intertemporal wealth constraints

Author

Listed:
  • Dian Zhu

    (Bank of Montreal)

  • Andrew J. Heunis

    (University of Waterloo)

Abstract

We address a problem of stochastic optimal control motivated by portfolio optimization in mathematical finance, the goal of which is to minimize the expected value of a general quadratic loss function of the wealth at close of trade when there is a specified convex constraint on the portfolio, together with a specified almost-sure lower-bound on intertemporal wealth over the full trading interval. A precursor to the present work, by Heunis (Ann Financ 11:243–282, 2015), addressed the simpler problem of minimizing a general quadratic loss function with a convex portfolio constraint and a stipulated almost-sure lower-bound on the wealth only at close of trade. In the parlance of optimal control the problem that we shall address here exhibits the combination of a control constraint (i.e. the portfolio constraint) together with an almost-sure intertemporal state constraint (on the wealth over the full trading interval). Optimal control problems with this combination of constraints are well known to be quite challenging even in the deterministic case, and of course become still more so when one deals with these same constraints in a stochastic setting. We nevertheless find that an ingenious variational approach of Rockafellar (Conjugate duality and optimization, CBMS-NSF series no. 16, SIAM, 1974), which played a key role in the precursor work noted above, is fully equal to the challenges posed by this problem, and leads naturally to an appropriate vector space of dual variables, together with a dual functional on the space of dual variables, such that the dual problem of maximizing the dual functional is guaranteed to have a solution (or Lagrange multiplier) when the problem constraints satisfy a simple and natural Slater condition. We then establish necessary and sufficient conditions for the optimality of a candidate wealth process in terms of the Lagrange multiplier, and use these conditions to construct an optimal portfolio.

Suggested Citation

  • Dian Zhu & Andrew J. Heunis, 2017. "Quadratic minimization with portfolio and intertemporal wealth constraints," Annals of Finance, Springer, vol. 13(3), pages 299-340, August.
  • Handle: RePEc:kap:annfin:v:13:y:2017:i:3:d:10.1007_s10436-017-0300-5
    DOI: 10.1007/s10436-017-0300-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10436-017-0300-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-017-0300-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Heunis, 2015. "Quadratic minimization with portfolio and terminal wealth constraints," Annals of Finance, Springer, vol. 11(2), pages 243-282, May.
    2. Guillaume Coqueret, 2015. "Diversified minimum-variance portfolios," Annals of Finance, Springer, vol. 11(2), pages 221-241, May.
    3. Guillaume Coqueret, 2015. "Diversified minimum-variance portfolios," Post-Print hal-02312223, HAL.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Yuki Shigeta, 2017. "Portfolio selections under mean-variance preference with multiple priors for means and variances," Annals of Finance, Springer, vol. 13(1), pages 97-124, February.
    6. Guillaume Coqueret, 2015. "Diversified minimum-variance portfolios," Post-Print hal-02009587, HAL.
    7. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    2. Bessler, Wolfgang & Taushanov, Georgi & Wolff, Dominik, 2021. "Optimal asset allocation strategies for international equity portfolios: A comparison of country versus industry optimization," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    3. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    4. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    5. Wolfgang Bessler & Georgi Taushanov & Dominik Wolff, 2021. "Factor investing and asset allocation strategies: a comparison of factor versus sector optimization," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 488-506, October.
    6. Vigo Pereira, Caio, 2021. "Portfolio efficiency with high-dimensional data as conditioning information," International Review of Financial Analysis, Elsevier, vol. 77(C).
    7. Francisco Fernández-Navarro & Luisa Martínez-Nieto & Mariano Carbonero-Ruz & Teresa Montero-Romero, 2021. "Mean Squared Variance Portfolio: A Mixed-Integer Linear Programming Formulation," Mathematics, MDPI, vol. 9(3), pages 1-13, January.
    8. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
    9. Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
    10. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02312186, HAL.
    11. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    12. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    13. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    14. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    15. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
    16. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    17. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    18. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    19. Wong, K.C. & Yam, S.C.P. & Zeng, J., 2019. "Mean-risk portfolio management with bankruptcy prohibition," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 153-172.
    20. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.

    More about this item

    Keywords

    Portfolio optimization; Stochastic control; Conjugate duality; Portfolio constraint; Intertemporal wealth constraint; Lagrange multiplier; Slater condition;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:13:y:2017:i:3:d:10.1007_s10436-017-0300-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.