IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v078i06.html
   My bibliography  Save this article

msBP: An R Package to Perform Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials Mixtures

Author

Listed:
  • Canale, Antonio

Abstract

msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016). The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Pólya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016).

Suggested Citation

  • Canale, Antonio, 2017. "msBP: An R Package to Perform Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials Mixtures," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i06).
  • Handle: RePEc:jss:jstsof:v:078:i06
    DOI: http://hdl.handle.net/10.18637/jss.v078.i06
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v078i06/v78i06.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v078i06/msBP_1.3.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v078i06/v78i06.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v078i06/indianliver.csv
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v078.i06?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    2. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luai Al-Labadi, 2021. "The two-sample problem via relative belief ratio," Computational Statistics, Springer, vol. 36(3), pages 1791-1808, September.
    2. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    3. Li Li & Timothy Hanson & Jiajia Zhang, 2015. "Spatial extended hazard model with application to prostate cancer survival," Biometrics, The International Biometric Society, vol. 71(2), pages 313-322, June.
    4. Jiajia Zhang & Timothy Hanson & Haiming Zhou, 2019. "Bayes factors for choosing among six common survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 361-379, April.
    5. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    6. William Cipolli & Timothy Hanson, 2019. "Supervised learning via smoothed Polya trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 877-904, December.
    7. Luai Al-Labadi & Forough Fazeli Asl & Zahra Saberi, 2022. "A Bayesian nonparametric multi-sample test in any dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 217-242, June.
    8. Hanson, Timothy E. & de Carvalho, Miguel & Chen, Yuhui, 2017. "Bernstein polynomial angular densities of multivariate extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 60-66.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:078:i06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.