IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v070i03.html
   My bibliography  Save this article

Quantile-Based Spectral Analysis in an Object-Oriented Framework and a Reference Implementation in R: The quantspec Package

Author

Listed:
  • Kley, Tobias

Abstract

Quantile-based approaches to the spectral analysis of time series have recently attracted a lot of attention. Several methods for estimation have been proposed in the literature and their statistical properties were analyzed. Yet, so far, neither a systematic method for computation nor a comprehensive software implementation are available to date. This paper contains two main contributions. First, an extensible framework for quantile-based spectral analysis of time series is developed and documented using object-oriented models. A comprehensive, open source reference implementation of this framework is provided in the R package quantspec, which is available from the Comprehensive R Archive Network. The second contribution of the present paper is to provide a detailed tutorial, with worked examples, for this R package. A reader who is already familiar with quantile-based spectral analysis and whose primary interest is not the design of the quantspec package, but how to use it, can read the tutorial and worked examples (Sections 3 and 4) independently.

Suggested Citation

  • Kley, Tobias, 2016. "Quantile-Based Spectral Analysis in an Object-Oriented Framework and a Reference Implementation in R: The quantspec Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i03).
  • Handle: RePEc:jss:jstsof:v:070:i03
    DOI: http://hdl.handle.net/10.18637/jss.v070.i03
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v070i03/v70i03.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v070i03/quantspec_1.2-1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v070i03/v70i03.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v070.i03?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    2. Zeileis, Achim & Grothendieck, Gabor, 2005. "zoo: S3 Infrastructure for Regular and Irregular Time Series," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i06).
    3. Tobias Kley & Stanislav Volgushev & Holger Dette & Marc Hallin, 2014. "Quantile Spectral Processes: Asymptotic Analysis and Inference," Working Papers ECARES ECARES 2014-07, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    2. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    3. Maghyereh, Aktham & Abdoh, Hussein, 2020. "Tail dependence between Bitcoin and financial assets: Evidence from a quantile cross-spectral approach," International Review of Financial Analysis, Elsevier, vol. 71(C).
    4. Siddique, Md. Abubakar & Nobanee, Haitham & Hasan, Md. Bokhtiar & Uddin, Gazi Salah & Hossain, Md. Naiem & Park, Donghyun, 2023. "How do energy markets react to climate policy uncertainty? Fossil vs. renewable and low-carbon energy assets," Energy Economics, Elsevier, vol. 128(C).
    5. Stefan Birr & Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2016. "On Wigner-Ville Spectra and the Unicity of Time-Varying Quantile-Based Spectral Densities," Working Papers ECARES ECARES 2016-38, ULB -- Universite Libre de Bruxelles.
    6. Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
    7. Kołodziejczyk, Hanna, 2023. "Stablecoins as diversifiers, hedges and safe havens: A quantile coherency approach," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    8. Chen, Tianbo & Sun, Ying & Li, Ta-Hsin, 2021. "A semi-parametric estimation method for the quantile spectrum with an application to earthquake classification using convolutional neural network," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    9. Kliber, Agata & Łęt, Blanka, 2022. "Degree of connectedness and the transfer of news across the oil market and the European stocks," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    2. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    3. Stefan Birr & Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2016. "On Wigner-Ville Spectra and the Unicity of Time-Varying Quantile-Based Spectral Densities," Working Papers ECARES ECARES 2016-38, ULB -- Universite Libre de Bruxelles.
    4. Jacob Dice & Mallick Hossain & David Rodziewicz, 2024. "Flood Risk Exposures and Mortgage-Backed Security Asset Performance and Risk Sharing," Research Working Paper RWP 24-05, Federal Reserve Bank of Kansas City.
    5. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    6. Massimo Albanese, 2022. "Community Enterprises: Snapshots from Italy," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 8, ejes_v8_i.
    7. Nicholas John Tierney & Dianne Cook & Tania Prvan, 2020. "brolgar: An R package to BRowse Over Longitudinal Data Graphically and Analytically in R," Monash Econometrics and Business Statistics Working Papers 43/20, Monash University, Department of Econometrics and Business Statistics.
    8. Michael Berlemann & Julia Freese & Sven Knoth, 2020. "Dating the start of the US house price bubble: an application of statistical process control," Empirical Economics, Springer, vol. 58(5), pages 2287-2307, May.
    9. Jiří Sedláček, 2013. "Using R in Finance [Využití R v oblasti financí]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2013(4), pages 145-163.
    10. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Judith M. Ament & Robin Freeman & Chris Carbone & Anna Vassall & Charlotte Watts, 2020. "An Empirical Analysis of Synergies and Tradeoffs between Sustainable Development Goals," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    12. Anota, Amélie & Savina, Marion & Bascoul-Mollevi, Caroline & Bonnetain, Franck, 2017. "QoLR: An R Package for the Longitudinal Analysis of Health-Related Quality of Life in Oncology," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i12).
    13. Ohana-Levi, Noa & Munitz, Sarel & Ben-Gal, Alon & Netzer, Yishai, 2020. "Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models," Agricultural Water Management, Elsevier, vol. 228(C).
    14. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    15. Allison Bailey & Paula R. Prist, 2024. "Landscape and Socioeconomic Factors Determine Malaria Incidence in Tropical Forest Countries," IJERPH, MDPI, vol. 21(5), pages 1-21, April.
    16. Ferstl, Robert & Hayden, Josef, 2010. "Zero-Coupon Yield Curve Estimation with the Package termstrc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i01).
    17. Golyandina, Nina & Korobeynikov, Anton & Shlemov, Alex & Usevich, Konstantin, 2015. "Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i02).
    18. Chris Heaton & Natalia Ponomareva & Qin Zhang, 2020. "Forecasting models for the Chinese macroeconomy: the simpler the better?," Empirical Economics, Springer, vol. 58(1), pages 139-167, January.
    19. Thelma Dede Baddoo & Zhijia Li & Yiqing Guan & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni, 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions," IJERPH, MDPI, vol. 17(11), pages 1-26, June.
    20. Kuebart, Andreas & Stabler, Martin, 2023. "Waves in time, but not in space – an analysis of pandemic severity of COVID-19 in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:070:i03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.