IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v054i04.html
   My bibliography  Save this article

isocir: An R Package for Constrained Inference Using Isotonic Regression for Circular Data, with an Application to Cell Biology

Author

Listed:
  • Barragán, Sandra
  • Fernández, Miguel
  • Rueda, Cristina
  • Peddada, Shyamal

Abstract

In many applications one may be interested in drawing inferences regarding the order of a collection of points on a unit circle. Due to the underlying geometry of the circle standard constrained inference procedures developed for Euclidean space data are not applicable. Recently, statistical inference for parameters under such order constraints on a unit circle was discussed in Rueda, Fernández, and Peddada (2009) and Fernández, Rueda, and Peddada (2012). In this paper we introduce the R package isocir which provides a set of functions that can be used for analyzing angular data subject to order constraints on a unit circle. Since this work is motivated by applications in cell biology, we illustrate the proposed package using a relevant cell cycle data.

Suggested Citation

  • Barragán, Sandra & Fernández, Miguel & Rueda, Cristina & Peddada, Shyamal, 2013. "isocir: An R Package for Constrained Inference Using Isotonic Regression for Circular Data, with an Application to Cell Biology," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i04).
  • Handle: RePEc:jss:jstsof:v:054:i04
    DOI: http://hdl.handle.net/10.18637/jss.v054.i04
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v054i04/isocir_An_R_Package_for_Constrained_Inference_Using_Isotonic_Regression_for_Circular_Data__with_an_Application_to_Cell_Biology.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v054i04/isocir_1.1-2.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v054i04/v54i04.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v054.i04?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rueda, Cristina & Fernández, Miguel A. & Peddada, Shyamal Das, 2009. "Estimation of Parameters Subject to Order Restrictions on a Circle With Application to Estimation of Phase Angles of Cell Cycle Genes," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 338-347.
    2. de Leeuw, Jan & Hornik, Kurt & Mair, Patrick, 2009. "Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Conde, David & Fernández, Miguel & Salvador, Bonifacio & Rueda, Cristina, 2015. "dawai: An R Package for Discriminant Analysis with Additional Information," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i10).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    2. Legrand, Catherine & Munda, Marco & Janssen, P. & Duchateau, L., 2012. "A general class of time-varying coefficients models for right censored data," LIDAM Discussion Papers ISBA 2012041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    4. Moro Russ A. & Härdle Wolfgang K. & Schäfer Dorothea, 2017. "Company rating with support vector machines," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 55-67, June.
    5. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    6. Ana Colubi & J. Santos Dominguez-Menchero & Gil Gonzalez-Rodriguez, 2018. "New designs to consistently estimate the isotonic regression," Computational Statistics, Springer, vol. 33(2), pages 639-658, June.
    7. Mario V. Wuthrich & Johanna Ziegel, 2023. "Isotonic Recalibration under a Low Signal-to-Noise Ratio," Papers 2301.02692, arXiv.org.
    8. repec:jss:jstsof:39:i06 is not listed on IDEAS
    9. Domínguez-Menchero, J. Santos & Rivera, Javier & Torres-Manzanera, Emilio, 2014. "Optimal purchase timing in the airline market," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 137-143.
    10. Bucarey, Víctor & Labbé, Martine & Morales, Juan M. & Pineda, Salvador, 2021. "An exact dynamic programming approach to segmented isotonic regression," Omega, Elsevier, vol. 105(C).
    11. Chathura Siriwardhana & K. B. Kulasekera & Somnath Datta, 2018. "Flexible semi-parametric regression of state occupational probabilities in a multistate model with right-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 464-491, July.
    12. Yu, Tao & Li, Pengfei & Chen, Baojiang & Yuan, Ao & Qin, Jing, 2023. "Maximum pairwise-rank-likelihood-based inference for the semiparametric transformation model," Journal of Econometrics, Elsevier, vol. 235(2), pages 454-469.
    13. Cristina Rueda & Miguel A. Fernández & Sandra Barragán & Kanti V. Mardia & Shyamal D. Peddada, 2016. "Circular piecewise regression with applications to cell‐cycle data," Biometrics, The International Biometric Society, vol. 72(4), pages 1266-1274, December.
    14. Fang, Fang & Chen, Yuanyuan, 2019. "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 180-194.
    15. Nuñez-Antonio, Gabriel & Gutiérrez-Peña, Eduardo, 2014. "A Bayesian model for longitudinal circular data based on the projected normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 506-519.
    16. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    17. Jelsema, Casey M. & Peddada, Shyamal D., 2016. "CLME: An R Package for Linear Mixed Effects Models under Inequality Constraints," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i01).
    18. Yang, Bill Huajian, 2019. "Monotonic Estimation for Probability Distribution and Multivariate Risk Scales by Constrained Minimum Generalized Cross-Entropy," MPRA Paper 93400, University Library of Munich, Germany.
    19. Nagy, Gábor I. & Barta, Gergő & Kazi, Sándor & Borbély, Gyula & Simon, Gábor, 2016. "GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1087-1093.
    20. Conde, David & Fernández, Miguel & Salvador, Bonifacio & Rueda, Cristina, 2015. "dawai: An R Package for Discriminant Analysis with Additional Information," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i10).
    21. David Conde & Miguel A. Fernández & Cristina Rueda & Bonifacio Salvador, 2021. "Isotonic boosting classification rules," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 289-313, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:054:i04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.