IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v24y2018i3d10.1007_s10985-017-9403-6.html
   My bibliography  Save this article

Flexible semi-parametric regression of state occupational probabilities in a multistate model with right-censored data

Author

Listed:
  • Chathura Siriwardhana

    (University of Hawaii)

  • K. B. Kulasekera

    (University of Louisville)

  • Somnath Datta

    (University of Florida)

Abstract

Inference for the state occupation probabilities, given a set of baseline covariates, is an important problem in survival analysis and time to event multistate data. We introduce an inverse censoring probability re-weighted semi-parametric single index model based approach to estimate conditional state occupation probabilities of a given individual in a multistate model under right-censoring. Besides obtaining a temporal regression function, we also test the potential time varying effect of a baseline covariate on future state occupation. We show that the proposed technique has desirable finite sample performances and its performance is competitive when compared with three other existing approaches. We illustrate the proposed methodology using two different data sets. First, we re-examine a well-known data set dealing with leukemia patients undergoing bone marrow transplant with various state transitions. Our second illustration is based on data from a study involving functional status of a set of spinal cord injured patients undergoing a rehabilitation program.

Suggested Citation

  • Chathura Siriwardhana & K. B. Kulasekera & Somnath Datta, 2018. "Flexible semi-parametric regression of state occupational probabilities in a multistate model with right-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 464-491, July.
  • Handle: RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9403-6
    DOI: 10.1007/s10985-017-9403-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-017-9403-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-017-9403-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Somnath Datta & Glen A. Satten, 2002. "Estimation of Integrated Transition Hazards and Stage Occupation Probabilities for Non-Markov Systems Under Dependent Censoring," Biometrics, The International Biometric Society, vol. 58(4), pages 792-802, December.
    2. Thomas H. Scheike & Mei‐Jie Zhang, 2007. "Direct Modelling of Regression Effects for Transition Probabilities in Multistate Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 17-32, March.
    3. de Leeuw, Jan & Hornik, Kurt & Mair, Patrick, 2009. "Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i05).
    4. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    5. Gang Li & Somnath Datta, 2001. "A Bootstrap Approach to Nonparametric Regression for Right Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 708-729, December.
    6. Per K. Andersen & John P. Klein, 2007. "Regression Analysis for Multistate Models Based on a Pseudo‐value Approach, with Applications to Bone Marrow Transplantation Studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 3-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    2. Somnath Datta & Rajeshwari Sundaram, 2006. "Nonparametric Estimation of Stage Occupation Probabilities in a Multistage Model with Current Status Data," Biometrics, The International Biometric Society, vol. 62(3), pages 829-837, September.
    3. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    4. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    5. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    6. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    7. Töpfer, Marina, 2017. "Detailed RIF decomposition with selection: The gender pay gap in Italy," Hohenheim Discussion Papers in Business, Economics and Social Sciences 26-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    8. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    9. Bucher, Axel & El Ghouch, Anouar & Van Keilegom, Ingrid, 2014. "Single-index quantile regression models for censored data," LIDAM Discussion Papers ISBA 2014001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Klein, Roger & Vella, Francis, 2010. "Estimating a class of triangular simultaneous equations models without exclusion restrictions," Journal of Econometrics, Elsevier, vol. 154(2), pages 154-164, February.
    11. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    12. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    13. Wende Clarence Safari & Ignacio López-de-Ullibarri & María Amalia Jácome, 2023. "Latency function estimation under the mixture cure model when the cure status is available," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 608-627, July.
    14. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    15. Xiaofeng Lv & Gupeng Zhang & Guangyu Ren, 2017. "Gini index estimation for lifetime data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 275-304, April.
    16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    17. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    18. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    19. Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
    20. Geweke, John, 2003. "Econometric issues in using the AHEAD panel," Journal of Econometrics, Elsevier, vol. 112(1), pages 115-120, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9403-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.