plink: An R Package for Linking Mixed-Format Tests Using IRT-Based Methods
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v035.i12
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- González, Jorge, 2014. "SNSequate: Standard and Nonstandard Statistical Models and Methods for Test Equating," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i07).
- Han-Yuan Zhang & Zi-Xia Zhao & Jian Xu & Peng Xu & Qing-Li Bai & Shi-Yong Yang & Li-Kun Jiang & Bao-Hua Chen, 2018. "Population genetic analysis of aquaculture salmonid populations in China using a 57K rainbow trout SNP array," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-12, August.
- Daniel M. Bolt & Xiangyi Liao, 2022. "Item Complexity: A Neglected Psychometric Feature of Test Items?," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1195-1213, December.
- Alexander Robitzsch, 2020. "L p Loss Functions in Invariance Alignment and Haberman Linking with Few or Many Groups," Stats, MDPI, vol. 3(3), pages 1-38, August.
- Brzezińska Justyna, 2018. "Item Response Theory Models in the Measurement Theory with the Use of ltm Package in R," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 22(1), pages 11-25, March.
- Yang Liu & Jan Hannig & Abhishek Pal Majumder, 2019. "Second-Order Probability Matching Priors for the Person Parameter in Unidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 701-718, September.
- Rikkert M. van der Lans & Ridwan Maulana & Michelle Helms-Lorenz & Carmen-MarÃa Fernández-GarcÃa & Seyeoung Chun & Thelma de Jager & Yulia Irnidayanti & Mercedes Inda-Caro & Okhwa Lee & Thys Coetze, 2021. "Student Perceptions of Teaching Quality in Five Countries: A Partial Credit Model Approach to Assess Measurement Invariance," SAGE Open, , vol. 11(3), pages 21582440211, August.
- Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:035:i12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.